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INTRODUCTION 

The planning of capital Investments should consider three 

factors: (1) the proper titriing of cash flows, (2) the inter­

relationship between projects, and (3) the risk associated with 

committing capital funds. Traditionally, capital budgeting 

consisted of finding a rate of return or present worth for each 

project ranking them and selecting only those that fall within 

the acceptable rate of return or budget constraints. The pro­

cedure avoided the effects of interrelationship of projects by 

forcing the assumption of independence. Therefore, those 

interdependent projects were grouped as one large project. 

Secondly, the risk associated with an investment was treated 

in the context of the investor's utility function. Finally, 

capital budgeting has been static in nature, planning for 

capital expenditure# one year at a time. The primary restric­

tion of the development of new and more CRnprehensive 

techniques was the limitation of computation. The character­

istics of investment planning models are generally ccmtplex 

nonlinear functions. 

With the advent of large-scale computer systems, the 

ccr.putnticnal res trie tiens have been relieved. Tuv uovelop-

ment of new methods to analyze risky interrelated investments 

was pioneered by Hillier, irtio employs chance-constrained 

programming for the analysis of risk. However, one of the 

problems of chance-cons trained programming is the assumption 
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that the random variable is normally distributed. This is not 

always the case in models of capital investments. 

This study will be concerned with the development of a 

chance-constrained model that employs a nonnegative (chi-

square) distributional assumption. The computational difficul­

ties usually associated with this approach will be handled by 

geometric programming. 

The study will review the current literature on capital 

investment planning and the techniques used for analysis. A 

chance-constrained programming model, using the chi-square 

assumption, is then developed and illustrated in two problems 

of investment planning. The first, a portfolio model, is 

formulated and its solutions compared with previous solutions 

using other assumptions and procedures. Next a capital 

budgeting problem is developed to analyze both the risk of 

actual losses as well as opportunity loss. The study is con-

1 ^ ̂ m — &  ̂  ̂m I • - im «%  ̂  ̂ ^ " - — " «b jr «Mill e 
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REVIEW OF LITERATURE 

The evaluation of risk associated with an investment 

project is a very important consideration in capital budgeting. 

This is especially true when the impact of failure could sig­

nificantly change the financial position of the organization. 

While the independence of investments can be achieved by 

diversification in portfolio investments, it is much more 

difficult to guard against failure in capital budgeting. The 

desirability of one investment project is often Interrelated 

with the performance of other investment projects. This inter­

relationship may be of a competitive nature, where the 

introduction of a new product would compete with existing 

products in the same market. On the other hand, they may be 

complementary, where as a new product may share ccrmon facili­

ties or technology, thereby sharing the cost. The revenues 

resulting from each of the investment projects must be 

correlated because their incomes are affected by the common 

factors. Those factors could be internal such as shared 

facilities or external such as the general state of the 

economy. The interrelationship between investment projects 

directly affects the total risk to the investment plan. 

Therefore, any capital investment decision» should give con­

sideration to the interrelationship of projects and their 

subsequent risk. 
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The general framework for current analysis of risky 

investments was developed by Lutz and Lutz (42) and later 

synthesized by Farrar (26) for testing particular investment 

models as well as providing a rigorous survey of the work done 

up to that time. 

Markowitz (46) treated a special case of interrelated 

risky investments in his analysis of portfolios containing a 

large number of securities. The portfolio model was formu­

lated as a static model that assumed a deterministic equivalent 

of a risky or uncertain model. Markowitz illustrated how to 

determine the portfolio configuration that provided the most 

suitable combination of rate of return and standard deviation 

of rate of return. His work subsequently motivated the work 

of Cheng (19), Sharpe (63), Baumal (4), Fama (25), and Mao and 

Samdal (45), Extension of the portfolio idea was developed 

by Naslund and Whins ton (53) baaed on the risk programming 

concept of Cnames ana cooper (lu). 

Weingartner's (72) treatment of the capital budgeting 

model, under certainty conditions but in a capital rationing 

and imperfect capital market, provided the foundation of later 

work by Naslund (51), Byrne (8), and others. Weingartner's 

(71) survey of papers on evaluation of interrelated investments 

provides a good cross section of current developments. 

The concept of incorporating the interrelationship of 

InvAPtmenC opporttmitics vith the risk Involveii was 

put forth by Hlllier (36) in which he formulated an investment 
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model that would generate one or more mutually independent 

series of cash flows that were assumed to be normally distrib­

uted. The cash flow within each series was assumed to be 

either mutually independent or perfectly correlated. The work 

was extended to the development of the probability distribu­

tion of the present value and suggestions for how it might be 

utilized in a decision process. This approach was carried on 

by Hertz (31), Hillier (37), Horowitz (39), and Hespos and 

Strassmann (32). 

The two primary characteristics of capital investment 

planning, according to Hillier (36), are the interrelationship 

of investment proposals and their subsequent risk. The fol­

lowing discussion of these two areas will provide a foundation 

for the models to be developed in later sections. 

Consideration of Interrelationship of Investments 

Consider the case where a number of capital investment 

proposals are presented to management for consideration. The 

decisions made will most likely affect the long-term growth of 

the organization; therefore, a good deal of thought goes into 

the planning of capital investments. The criterion for project 

selection must be one that incorporates the effects of uncer­

tainty or risk, the goals and objectives of the organization, 

and the interrelationship of the investment proposals. 

The decision to accept or reject a project at a given 

time is more of a "go or no-go" type of decision In capital 



www.manaraa.com

6 

budgeting; whereas, the decision in portfolio selection is 

"how much" or what percentage of the portfolio should be of a 

certain type of stock. The former decision rule should not be 

viewed as restrictive since projects can be postponed and 

decomposed into phases (pilot plant, product plant, and etc.) 

where the latter is dependent upon the former. Also, alterna­

tive strategies could be formulated, such as, start a new 

product in a number of different configurations. Then if 

losses drop below a given level, drop the losers and gear up 

for the others. 

Now consider an investment decision to be of the form 

I'. 
if the i^ investment is accepted at time j 

*i1 th (2.0) 
if the i investment is rejected at time j 

where the number of investment projects are i s 1,2,...,1 and 

the decision periods are j « 1,2,.,.,J or the planning horizon. 

For those combinations of investments that are mutually exclu­

sive either by design or by chance, the constraint on the 

decision variables can be expressed as 

^'i*i - for all i f k. (2.1) 

On the other hand, if one investment project is contingent 

upon another being approved, then the constraint is 

*IJ » *ij-l» (2'2) 

where the decision at x^j_^ must be affirmative before the 

latter decision x. j can be considered. By imposing; this type 
J 

of condition, invoctmcnt planiilng caa b# together 
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in a sequential decision process. Hillier (36) has discussed 

the use of dynamic programming for planning investment programs 

based on this type of decomposition. 

The primary purpose of adding the decision structure to 

investment planning models is to evaluate the subsequent cash 

flow that is generated. Assume that the immediate cash flow 

starts at some period j and is evaluated at the end of each 

subsequent period. The number of periods that the cash flow 

is evaluated (k # 0,1,2,...) from the time of investment to 

the present is the total net cash flow Xj^(x) (total positive 

inflows minus total negative outflows). Thus, we can think of 

the net cash flow Xj^(x) as the result of a sequence of deci­

sions concerning a project i or set of projects that occurred 

at various times (j « 1,2,...). The decision at each point in 

time initiated a caeh flow stream which occurred over k inter­

vals of times (say years). The net value of the cash flows is 

evaluated at the present as 

X|ç(x) • £|^j^(x), k ® 1,2,.,«,K« (2.3) 

Hillier points out two important facts about the net cash 

flow. First, that the cash flow stream resulting from a deci­

sion is actually an aggregation of many distinct cash flow 

streams some of which are interrelated. Also, the decision at 

some point in the process may itself be dependent on previous 

cash flow streams that are aggregations. Secondly, the result­

ing cash flow streams usually are random variables giving the 
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model the inherent risk or uncertainty characteristics. There­

fore, the cash flow that results from an affirmative decision 

may take on a range of values causing the net cash flow to be 

described in terms of a probability distribution. Hillier 

continues this approach by developing the distribution of the 

discounted cash flow or the present worth and employs this 

criteria in a utility maximization model. 

Before we can look at the distribution of the total net 

cash flow, we should investigate the cash flow of the indivi­

dual investment. First, consider an investment project 

independent of others and that the decision to initiate the 

project occurred at some time j^. The actual investment cost 

at j^ and all subsequent investment costs (negative cash flow) 

may be random variables. Likewise, the returns from the 

investment can also be viewed as a random variable at each 

period k. If we estimate the cash flow by its mean fi. . and 

variance of some probability distribution, then the net 

cash flow is the difference of two random variables estimated 

by their mean and variance. 

For the present worth case, the expected present worth is 

merely the sum of the discounted me«n cagh flovs. the 

variance presents problems in the correlation betr^ssn cash 

flows from the same source but in different periods. Various 

methods of handling the correlation between cash flows have 

been described in (31 and 35), 
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2 Suppose one has estimated the mean and variance 

of the net cash flows for all investment proposals independ­

ently. If there is no interrelationship between the proposals, 

then we have no problem in determining the mean and variance 

of the present worth for each proposal. If, on the other hand, 

the presence of some kind of interaction between proposals 

exists, it can invalidate the simple additivity assumption. 

For example, two proposals were estimated independently and 

both found attractive. However, in combination they were found 

to be competitive, thus, either or both became no longer attrac» 

tive. Conversely, a proposal may be unattractive by itself, 

but in conjunction with another project, may be very attractive. 

In both cases, the analysis of the investment proposal in isola­

tion can result in misleading decisions. Thus, the criteria 

for investment decisions should be modified to incorporate the 

effects of interaction. 

To formulate a cash flow that includes this effect, let 

h(x) be defined as the net amount by which the individual cash 

flows X^(x) will be adjusted due to complementarity (positive 

adjustment) or competitive interaction (negative adjustment). 

Since the cash flows are random variables, it Jogicsl to 

make the assumption that h(x) will also be a random variable. 

Also, the effect of a proposal interacting with more than one 

other proposal can be expresaed in a "pairwioo" combination 

such that che coial effect is the sum of the pairwise effects. 
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Therefore, we can define 

h(x) « 1 « 1,2 

1 « 1,2 

i^rii'^n 

> • • • » 

I 

1 

(2.4) 

where 1^1 and + ̂ 11^ la the net addition (positive or 

negative) to the total net cash flow due to conplementarlty 

between the two proposals (1 and 1) If both are accepted. 

Therefore, the total cash flow for the two proposals (1 and l) 

can be expressed as (u^ + ̂ ^^) and (P^ + respectively. 

The complementary effect of each proposal can be thought of as 

their equal share In the total effect (p^^ « // ^^). Thus, the 

net cash flow can be generalized as 

X^(x^j) * * h(x), 1 • 1,2,...,!, (2.5) 

k = 1,2,...,K. 

Expressing the cash flow In terms of Its mean and variance, we 

have 

where 1 = 1,2,...,I and k = 1,2,...,K. 

In general, the above expressions only mean that tho 

estimated cash flow of a proposal at each time Interval must be 

augmented by the Interaction effect. Now that the mean and 

variance of the total net cash flow can be found, the next 

question Is to determine Itn probability di«t:rih"t:io« = In th* 

more general ease put forth by Hllllcr (35, 36, and 3?) based 

( 2 . 6 )  

and 

(2.7) 
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on the central limit theonan, he makes a strong argument for 

assuming the random variables to be normally distributed. One 

primary reason for making this assumption is that linear 

combinations of normal random variables are also distributed 

normally. Also, the central limit theorum indicates that the 

sum of a series of random variables, having distributions 

other than normal, can be approximated as a normal distribu­

tion under certain conditions. 

For certain types of investment models, the normality 

assumption is very sound. In others, however, the conditions 

under which the normality assumption is made are not so readily 

acceptable. In a later section, we shall discuss the effects 

of using the deterministic equivalent of the random variable 

in a stochastic programming model. 

The development of estimates for interrelated cash flows 

and the introduction of the investment decision function 

allows for a great deal more flexibility in planning capital 

investments. However, this decomposition of the model brings 

with it more difficulty in ccmiputation. This computational 

difficulty is compounded when considering the problems of risk 

analysis. The next section will discuss briefly three methods 

of risk analysis generally referred to as stochastic program­

ming which have been employed in the analysis of capital 

investments. 
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Consideration of Risk in Investments 

Mathematical programming can be thought of as stochastic 

if one or more of the coefficients in the set (A, b, c) are 

random variables with a specific probability distribution. 

When the probability distribution of the parameters is known 

or a priori specified, then an important class of decision 

problems can be formulated to answer such questions as: 

(1) how to decide on a decision vector which is in s «ne sense 

optimal and (2) how to characterize the sensitivity of the 

decision vector to variation of the parameters, 

These questions and others have been approached in the 

literature on stochastic programming. The research, to date, 

can be divided into three major areas: (1) stochastic linear 

programming (SLP), (2) two-stage linear programming untfar 

uncertainty (LPUU), and (3) chance-constraint programming 

(CCP). Generally speaking, all three approaches have the 

following common characteristics; that is, they incorporate 

the initial probability distribution of the parameters in 

order to convert a probabilistic linear program into a deter­

ministic form and then define a set of decision rules having 

some optimality properties. Of course « the methods by which 

they incorporate the probability distribution and specify the 

decision rules are different for each approach. 

If the distribution of the parameters is lanknox^i, the 

problem of defining the characteristics of the optimal vector 

becomes very difficult. Cases of this nature have been 
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treated by simulation techniques (74) or in the context of 

game theory (41 and 49). However, when the probability dis­

tribution of the parameters is known or specified, there are 

three basic approaches to incorporating the random variable 

into the framework of mathematical programming. 

If we assume that sample information is available, how­

ever the sample statistics of the parameters are unknown at 

the time of the decision, then the sample distribution of the 

activity vector x becomes dependent upon: (1) the restrictions 

of the random elements imposed by feasibility, (2) the sample 

design, and (3) the form of the population distribution. 

Problems of this nature have been treated in the general frame­

work of stochastic linear programming (69). 

If we consider the decision vector x to be nonstochastic 

in the sense that we must determine the optimal solution for 

the vector x given the random variation of the parameters 

(A, b, c), then the specification of the decision maker's 

attitude towards risk becomes very important (48), This 

general area has been approached as chance-con s train t program­

ming (CCP) and safety-first programming (SFP). 

On the other hand, if we decompose the problem into two 

stages to obtain an approximation, the first stage employs the 

certainty equivalent of the random variable in the context of 

an ordinary linear programming model. Then, the second stage 

defines a penalty function that m&difies the JetenalniaClc 

approximation to incorporate the effect of the random 
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variable (70). This approach is usually termed two-stage 

linear programming under uncertainty (LPUU). 

A. brief review of these methods and their application to 

risk analysis in general and to capital investment models in 

particular follows. 

Stochastic linear programming was first suggested by 

Tintner (65 and 66) and was concerned with finding the sta­

tistical distribution of the optimal solution of a model such 

as 

max Z B c'x, (2.8) 

subject to 

Ax < b, (2.9) 

X > 0. (2.10) 

Assuming the multivariate probability distribution for the 

elements A, b, c is known, then the probability of simultaneous 

occurrence of specified values of the matrix A and the vectors 

b and c can be expressed as 

prob (A, b, c). (2.11) 

Tintner developed both a passive approach and an active 

approach to finding the distribution of the optimal solution 

from the multivariate probability function (2.11). 

The passive approach assumes that all combinations of the 

random variables producing an optimal activity can be found. 

Then it is possible to derive the probability distribution of 

the cpcimal soluticn that is ccmprlsGu of the set of optirAal 

activities x. Since the assumption of independence of the 
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coefficients is implicit in the programming model, only the 

linear terms of the Taylor expansion is needed to find the 
yip 

distribution of Z The confidence interval for the max 

expected value of the function has been developed by Tintner 

(65) J Babbar i'.t and 3), and extended by Sengupta (60 and 62) 

and others. From a computational viewpoint, simulation has 

been used to generate the values of the random variables which 

are used to solve an ordinary linear program. By repeated 

lUf 
simulation runs, a density function for can be developed. 

The active approach to stochastic linear programming 

transforms the problem into a decision or policy model. If we 

modify the above model to the following form 

max Z • c'x, (2.12) 

subject to 

Ax < bD, (2.13) 

X > 0, (2.14) 

where D is a matrix with all elements 

0 < d^^j < 1 and Zjd^j * 1, j**l,.«.,J. (2.13) 

The decision matrix D is composed of decision variables 

*^ij denote the proportional allocation of the i 

rcscurcc assis^.cd tc activity acszziing that all rcGcurcss 

are fully utilized. The objective is to choose a best set of 

d^j values for the matrix D that maximizes the objective 

function in accordance with the preference function of the 

decision maker. 
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Application of stochastic linear programming to problems 

of resource allocation can ba found in (50 and 51). The 

problem of decision analysis has been treated in (66). For a 

critical appraisal of stochastic linear programming, see 

Sengupta and Tintrer (61). 

Certain types of stochastic programming problems, when 

examined closely, can be decomposed into two or more stages. 

By separating the problem into stages, • decision rule or 

strategy can be employed to govern the reaction to any given 

value of the uncertain event. This approach has been termed 

two-stage linear programming under uncertainty (LPUU). Ths 

basic approach to LPUU is to approximate the optimal solution 

to the problem by assuming the parameters are deterministic or 

assigned; this is the first stage. The second stage incorpo­

rates the effect of the random variable by modifying the first 

stage solution. The model can be expressed as follows (70) 

max &jG(Cj)Xj LqProbq(L]^Cq^%q^;, (2.16) 

subject to 

^j*ij*j * (first stage constraint) (2.17) 

* ̂ lVl*ql V'' 
(2.18) 

(second-stage decision rule) 

(2.19) 

where q « 12 Q (no. of stages), J « 1 K and 

m = q 4 1 

I «H» tr «A» t 

9 • • • 9 

(variablo sot), and i = l,...,q âTm 

,G (constraint set). 
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The values of Xj are fixed in the first stage before the 

exact value of the random variable is known. The constraints 

(2.17) contain only the first stage terms with the parameters 

assumed to be known. For the second stage and all subsequent 

stages, there always exists a feasible level that can be 

determined after all the random variables are known. Also, 

there is a finite number of stages or possible mets of values 

of the parameters (Cg^, ag^^, b^). Each set of the parame­

ters' values can be weighed by the probability of their 

occurrence prob^. Notice in the second-stage decision rule 

constraint (2.18) there are (G - q) Q equations. Thus, as the 

number of stages increases, the problem becomes computationally 

more difficult. 

Linear programming under uncertainty has been applied to 

many areas where a decision rule is highly desirable for 

planning purposes (20, 24, 27, and 43). Because of the decom­

position principle explicit to its formulation, LFUU has been 

combined with other techniques that offset its computational 

disadvantages. Avriel and Wilde (1) combined geometric pro­

gramming and two-stage linear programming under uncertainty to 

handle a broad class of nonlinear stochastic problems. 

Hillier'fl (36) work interrelated risky investments also 

employed LPUU in conjunction with chance-constraint program­

ming to handle multi-stage investment planning models, Byrne 

^ (o) propoeeu a similar approach to capital budgeting 

problems. 
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The concept of chance-constraint programming was first 

introduced by Chames and Cooper (li) as part of a model for 

scheduling the production of heating oil to meet an uncertain 

demand. While the statistical distribution of demand was 

known, its high degree cf variation exceeded the bounds of the 

scheduling constraints making deterministic programming 

unsuitable. A new approach was needed which would replace the 

precise deterministic constraints by one that enbodied the 

intent of the management policy, not the hard and fast rule. 

Thus, this new approach needed to represent bounds inside of 

which management would like to operate "most of the time" but 

not exactly "all of the time". 

The resulting chance-constraint concept requires a con­

straint to hold with at least a specified level of probability 

but not necessarily with probability of one. This charac­

teristic distinguishes chance-constraint programming from the 

previously mentioned linear programing under uncertainty. 

The latter requires that all possible combinations of values 

of the random variables must have a probability of one of 

occurrence. The concept of decision rules vbich result from 

solving a chance-constrained problem are designed to present a 

plan of action that is good most of the time but not all of 

the time. 

The exact nature of the decision rule is dependent, in 

part, cn tho possibility of a&nple points inconalaCwHL wiLu 

the constraints. In general, our object ia to find an optimal 



www.manaraa.com

19 

vector of stochastic decision rules 

X M *(A, b, c), 

of the generalized chance-constrained model 

(2 .20)  

max Z " c'x (2.21) 

subject to 

prob (A^ < b) > a (2 .22)  

v^ere a is the specified tolerance limit of the constraint 

such that it may be violated as more than 100(1 - a)% of the 

time. The parameters A, b, c are defined as before. 

The linear decision rule X is based on the premise that 

the function <p is selected from a prescribed class of func­

tions in which the matrix A and vector c contain only constant 

elements and X is restricted to being a linear function of the 

random variables in b. Much of the earlier work was based on 

this type of linear decision rules (10, 11, and 12). 

Another type of decision rule which often arises in 

budgetary planning models is called the zero order decision 

rule. In this type of rule, the decision vector is not per­

mitted to be an explicit function of any of the random 

variables involved in the model. In such cases, the decision 

any observations being made on the random variable. Applica­

tions of this decision rule are numerous; for example, see 

(14, 17, and 18). 

A more recent decision rule that, in part, follows the 

decomposition concept of two-stage linear programming under 
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uncertainty is the general n-perlod decision rule. Specifi­

cally, the rule contends that the decision required at the 

period does not have to be made until the beginning of that 

period. Thus, it is desirable to have decision rule Xj deter­

mined in a conditional manner or the experience accumulated 

through all previous periods, as well as implicitly reflecting 

future possible states of the system. Therefore, Xj is allowed 

to be a function of randan variables observed in previous 

periods but not of the or subsequent periods. In this 

way, Xj maximizes the use of Information accumulated up to the 

time the decision rule must be implemented. Specific examples 

of this decision rule can be found in (15). 

The basic core of literature on chance-constraint pro­

gramming centers around the use of linear decision rules and 

normal random variables. The basic objective of the program is 

to convert the chance-constraint model into a deterministic 

equivalent linear or nonlinear prograimilng model. The ration­

ale for these assumptions is that they led to a compatible 

linear or nonlinear problem The general method for obtaining 

the deterministic equivalent for & chance-constrained problem 

can be developed as follows. 

Determine the decision vector x that 

mln EjCjXj, (2.23) 

subject to 

^ b^, 1 1,...,X, (2.24) 
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Xj > 0, j . 1,...,J, (2.25) 

where a^j'* are the constraint coefficients, the b^'a are the 

resources available, and cy's are the elements of the objective 

function. The chance-constraint formulation can be developed 

from the above general form of the mathenatical programming 

model by assuming the constraint coefficients a^j are random 

variables with normal distribution. The probability that the 

constraint inequality containing the random variable must be 

satisfied is denoted as Thus, the constraint set (2.24) 

can be stated as 

prob (EjAijXj > bj^) > a^, i « 1,...,I, (2.26) 

j * 1,...,J. 

Let us assume for the i constraint that the a^j's are 

independent random variables with means ..., a^j with 

2 2 
variances a (a^^), ..., a (a^j). Thus, we can redefine the 

constraint as 

u^ ̂  Eja^jXj, j ® 1,...,J. (2.27) 

This variable is normally distributed with mean 

s (2.28) 

with variance 

*2(u^) . Ej ̂ («ij)*j, j " 1,...,J. (2.29) 

Each constraint can be restated as 
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By expressing the left side of the inequality in terms of the 

standard function, we have 

(2.31) prob (u^ > b^) = J'^^h(u^)duj^, 

where h(u^) is the normal density function of Uj^. By setting 

Z "i • \ ^ ° ^ ° ' 

and substituting the above in the lower limit of integration 

of (2.31); we obtain 

prob (uj^ > bj^) « Xpf(Zj^)dZ, (2.33) 

where 

r « 

and f(Z) is the standardized normal density function 

(2.34) 

f(Z) 
f9. 

'-T . exp (-%y ). (2.35) 

In terms of the stendarized normal left-tail cumulative 

function 

prob (u^ > b^) « 1 - (2.36) 

returning to the constraint form (2.30), we can express the 

left-hand side as 

b, - E .a. 
^ 1 —  1 , . . « , J ,  (2.37) 
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employing the inverse function, we obtain 

% . ^.i <F"^(l-a). (2.38) 

For simplicity, let the expression (2.38) be equivalent to 

<P(ct) where we can define *(o) as the percentage or fractile of 

tolerance for each constraint, e.g., if a « .95, then 

0(oi) s ,05. We can now write the deterministic equivalent 

constraint as 

EjâtjXj + «(a)(Ej«^2(aj^j)x^)^ > b^. (2.39) 

To illustrate the use of chance-constraint programming, we can 

use the problem of determining the optimal mix of cattle feed 

at minimal cost. This problem is well known in the literature 

of linear programming (6). The problem is concerned with 

finding the optimal mix of raw materials that meets the 

nutrient requirements at minimal cost. The data for the 

problem is given below: 

*1 

Barlev 

*2 

Oats 

*3 

Sesame 
flakes 

*4 
Ground­
nut 
meal 

"i 

Require­
ment 

Parccnt _ 
protein (a^j) 12.00 11.90 41.80 52.10 21 

0.28 0.19 20.50 0.62 

Percent fat (a^j) 2.30 5.60 11.10 1.30 5 

Cost per ton 
(guilders) 24.55 26.75 35.00 40.50 
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The problem can be formulated as 

mln Z " 24.55%^ + 26.75x2 + SS.OOxg + 40.50x^, (2.40) 

subject to 

12.00xj^ + 11.90x2 + 41.80x3 + 52.10x^ + (-1.645) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

For more detail of the problem, see (6). 

Comparing the solution of the linear form and the stochas­

tic form below, we can see that by relaxing the constraints 

the optimal cost is changed as well as the values of the opti­

mal variables. Note that the optimal cost increased in the 

stochastic case. This increase can be attributed to the 

previous linear model, by ignoring the uncertainty aspect* 

compromised the solution and any subsequent decisions. 

Linear came Stochastic case 

Z max " 28.94 Z*max B 29.89 

*2 • 

.6852 

.0127 

Xj^ « .6359 

Xg = 0 

.3021 X3 « .3127 

X/^ = .0515 
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The applications of chance-constraint programning to 

problems of decision analysis and resources allocation are 

summarized in (40). Since the concept of chance-constraint 

is particularly applicable to the decision problems in finan­

cial planning, it is worth mentioning a few typical models 

found in the literature. 

One primary problem in investment planning is the 

liquidity requirements. Models, where the liquidity condition 

is chance constrained, can be seen in (4, 7, and 8). In 

conjunction with the liquidity conditions, a group of problems 

dealing with the extent that borrowing and lending can take 

place in an investment model have been examined in (18). The 

classical portfolio model has been extended to chance-

constraint programming (51, 52, and 53). The primary character­

istics of this type of model are the loss constraint and the 

capital available constraints. Research and development plan­

ning have also been investigated using this concept (17). 

Here the main feature is the way in which the model takes into 

account the possibility of a "breakthrough". 

Finally, capital budgeting problems have been explored by 

(7J 8J 52, and 53) under many assumptions. Byrne (8) 

examines the use of payback methods as being chance constrained 

to study the recovery rate of the initial investissent. Other 

financial plazming models can be found in (40). 

The three methods of stochastic programming, discussed in 

this aoction, have a common problem, that of difficulty in 
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computation. The linear programming under uncertainty (LPUU) 

presents problems in evaluating the second stage v^ere all 

possible combinations of the random variables are expressed, 

Stochastic linear programming (SLP) and chance-constraint 

programming (CCP) present computational difficulties by the 

introduction of nonlinear terms in the model. Computational 

procedures for nonlinear programming, until recently, have 

been lacking in their ability to handle complex problems such 

as those present in investment planning. Recently, however, 

the development of two computational methods of handling 

general nonlinear programming problems shows a great deal of 

promise. The two methods, sequential unconstrained minimiza­

tion technique (SUMT) and geometric programming, are discussed 

in the next section. 

Computational Aspects of Risk Analysis 

ipol nrvïor'ormn'i no 4 m »»«*«/»»•/• "S k — — 

the logical extension of classical optimization theory, formu­

lated in such a manner as to facilitate the use of digital 

computer systems. A general statement of the mathematical 

programming problem is to find a vector x that solves the 

problem 

min f(x), (2.45) 

subject to 

gt(x) > 0, i = 1,2,...,1. (2.46) 
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This constrained optimization problem can be solved by means 

of the Lagrange multiplier technique (23 and 75). This 

method, however, requires that all constraints be exact equali­

ties. Therefore, the constraint equation must be modified, 

without loss of generality, to include a slack variable that 

will convert the inequality into an equality constraint 

gj^(x) - Xg = 0. (2.47) 

Now the problem can be formulated as a Lagrangian function 

L(x,X) - f(x) - Z:^Xj^(gj^(x)), i - 1,...,1, (2.48) 

where is the Lagrange multiplier of the constraint function. 

By solving this function for all values of x cmd X , a local 

and global optimal can be found. This problem, when trans­

formed into the Lagrangian form, becomes an unconstrained 

optimization problem that can be solved by ordinary calculus. 

The computational problem with the Lagrangian method is 

thAt *"!"« of r. cr.d X rrMzt be fcczd tcfcrc 

the global optimal is ascertained. Computational difficulties 

are compounded by the increasing size of the model, i.e., the 

number of variables and constraints and also by the intro­

duction of nonlinearity. Therefore, direct Lagrangian 

solutions are, to date, not computationally feasible for large 

problems. 

Fiacco and HcCormick (29) state that the Lagrange method 

is inextricably associated with every computational method o£ 

mathematical progrfiirming. For this rAaaon, 
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techniques to handle ccxnplex nonlinear optimization models 

have been based on the Lagrangian theory. Two current methods 

which will be discussed here are the sequential unconstrained 

minimization technique (SUHT), developed by Fiacco and 

HcCormick (29), and geometric programming, developed by 

Duffin, Peterson, and Zener (23). 

Fiacco and McCormick developed their computational 

technique on an idea proposed by Carroll (9). The general 

form of SIMT can be expressed in the following way. Find a 

vector X that will 

min f(x), (2.49) 

subject to 

«^(x) >0, i « l,2,...,m, (2.50) 

h (x) >0, j « m+l,,..,M, (2.51) 

where there exists at least one point x such that g^(x) > 0 

for i = 1 m. The algorithm defines an iineoinftî:r«ir»«ri 

auxiliary function 

prob (x;r^) = f(x) + r^Sj^(gj^(x)"^) + r][^ZjSj(x), (2.52) 

where r^ > 0, i = l;...,m, and j = m4l,... ,M. 

The auxiliary function ie the same as the La^ranftian 

function given above. They differ, however, in their compu­

tational procedure. For example, as a starting point, let 

satisfy the condition of (2,50); proceed from to a point 

%(r^) that approximates the minimum of prob (x,r^) within the 

set of points satisfying g^(x) >0, i as l,...,m. Next form a 
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new function 

prob (x^rg) = f(x) + (2.53) 

where r^^ > ^2 > 0, i • and j * m+l,...,M. 

Starting from x(r^), approximate the minimum value of 

pxob (x^rg). By continuing this procedure, a sequence of 

points (x(r^)), k • 1,2,3,..., can be generated that respec­

tively minimizes the auxiliary function prob (x,r^) where r^ 

is monotonically decreasing to zero. The basic postulate 

proven by Fiacco and McCormick (29) is that the sequence of 

unconstrained minima (x(r^)) will approach an optimal solution 

to a mathematical programming problem of the form defined 

above. The rationale for SUMT is given by Bracken and 

McCormick (6) and is as follows. 

The second term in (2.53) can be thought of as a penalty 

factor attached to the objective function f(x) and assures 

that a minimum of the auxiliarv function is achieved in the 

interior of the inequality-constrained region. This is accom­

plished by balancing the avoidance of boundaries and 

minimization of f(x). To illustrate, consider the trajectory 

of points that tend to minimize prob (x,r^) starting at x^. 

The locus of these minima define a curve on which the 

prob (%,r^) Iq continually decreasing; therefore, no point on 

the trajectory can exceed the initial value of prob (x^,rj^). 

The feasible boundary is defined by one or more of the 

g^(x) " 0. It can be the valw the 
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function goes to positive infinity as the boundary is approached 

fran the interior region. Consequently, the boundary can never 

be pierced by the trajectory and the minimum of prob (xjTj^) 

must be a feasible interior point. Along the same line, the 

third term in (2.53) can be thought of as a barrier function. 

As r^ goes to zero, the third term would go to infinity 

unless each g^(x(r^)) is zero, in which case the auxiliary 

function would force the g^'s to zero. Therefore, we can say 

that a global minimum can be found in a compact set containing 

every limit point of any sub-sequence of x when the following 

conditions hold 

(1) limit r^Z.g. (x)'^ «0, i « l,...,m, 
k — «  ̂  

(2) limit rr^.g?(x) a 0, j « m + 1,... ,M, 
k—VOO ^ J J 

(3) limit prob (x,r^) « V*, 
k --co 

. . . .  .  .  a  
wnore k. les tne icerarron numosr ana v is rno opcimal. 

Clearly, the computation of the SUMT method is easier than the 

direct application of th© Lagrange multiplier method. Other 

motivations for using this tramsformatlon is that constraints 

satisfied at any iteration can be dropped, thereby reducing 

the size of the model. The theoretical development of the 

technique is given in (28 and 29) for "well-behaved" convex 

problems. For non-convex problems. Strong (64) has shown that 

the exl«t«nert of a global minima nf the sirciliar}' ftincticn 

convorgcs to the global solution to the pïogranim'ing problem. 

(2.54) 

(2.55) 

(2.56) 
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The use of SUMT as a computational procedure for the 

nonlinear programming problem has been documented by Bracken 

and McCormick (6). The use of the technique in risk analysis 

is demonstrated by Portillo-Campbell (58), Other applications 

and information are described in (75). 

Geometric programming is another mathematical optimization 

procedure for dealing with nonlinear functions. The theory 

establishes the existence theorems characterizing optimal solu­

tions and the framework for computational algorithms. An 

important feature of geometric programming is that it seeks 

optimal solutions without knowing the corresponding policy 

variables. Instead of seeking the optimal values of the 

independent variables first, it finds the optimal distribution 

of the total (cost) among the terms of the objective function. 

The optimal distribution of cost can be formulated in a con­

strained minimization problem referred to as the primal. The 

duality theorem developed by Duffin, Peterson, and Zener (23) 

relates the primal to a computationally attractive maximization 

problem called the dual. Within this context, we can discuss 

the use of geometric programming to solve nonlinear programming 

problems that arise in capital investment planning. 

Geometric programming derives its name from the geometric 

inequality which states that the arithmetic mean is at least 

as great as the geometric mean. The most important feature of 

uliis concept is the orthogonality of its vectors. To illus­

trate the concept, lot 
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(Yl - y;)^ > 0, (2.57) 

thus 

(y^ - ZyjXg + 72 > 0, (2.58) 

adding to both sides 

y\ + Zyjyz + y\> ̂ ViYz* (2.59) 

taking the square root and dividing by 2 results in 

%yi + %y2 ̂  y\y2- (2.6O) 

The problem is now expressed in the geometric inequality form. 

A more general expression is 

> ^i^i * (2.61) 

where 

^i'^i - ® ^i^i • (2.62) 

rearranging the variables by letting y^^ = (^y^ 

yi 4, 
^^i - » (2.63) 

now let 

®il ®i2 *in, 
g(y) a where = Cit^l • ^2 * * * * ^n ^' (2.64) 

By finding a minimum of g(y), the set of optimal weights ((^) 

will be found that satisfies the geometric inequality. There­

fore, the primal program can be expressed as 

a. .. 
min^ g^Cc) ̂ EjCjTTjt^^^, 1 « l,...,n^, (2.65) 

j ® 1* J • • • 9 
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subject to 

g^Ct) = Ej^Cj^TTjtj^^ <1, k « l,...,p, (2.66) 

1 = « » « >**1^» 

where tj > 0, for 1 « l,...,n, which forces g^(t) < 1, for 

k • 0, 1 , . « . , P ;  

where 

% ̂ 1; * "k-1 k = l,...,p. (2.67) 

The exponents are arbitrary real numbers but the c ̂ 

coefficients are required to be positive, thus requiring gj^(t) 

to be a positive polynomial termed posvnomials. The dual 

program is formulated from the right-hand side of the geometric 

inequality in which the weighing function ^is found that 

yields an optimal solution to the problem. The general form 

can be expressed as 

max v(0 - f? AR^ 

subject to 

^i^i " ^ = 1,...,^0, (2.69) 

=0, i o  l,...,np, ( 2 . 70) 

\(0 a i «S mj^,... ,nj^, (2.71) 

where a^j, Cj, m^, and n^ are the same as for the primal 

program. The first constraint is the normalizing condition, 

while the second la the orthogonality condition. 
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While the concept is challenging, some computational 

limitations restricted the early application of geometric 

programming. For example, the function g^(t) in the primal 

program is generally non-convex for which no existing computa­

tional procedure existed at that time. Secondly, the 

limitation of only using posynomials restricted its general 

application. Some of the extensions of geometzric programming 

to overcome these difficulties and produce an efficient compu­

tational procedure for handling general nonlinear programming 

problems will be briefly described. 

Geometric programming requires positive coefficients 

since they are raised to a fractional power in the géométrie 

inequality form; thus, negative numbers are not allowed. This 

restriction was relaxed by Passy and Wilde (57) in their 

development of a quasi duality theory for geometric program­

ming called generalized polynomial programming. Passy 

introduced a signum function to the polynomial term, such that 

every term yields a program very similar to a geometric pro­

gram. The general form of this program is 

min g^Cx) (2.72) 

±1)» m « 1 (2.73) 

where 

(2.74) 
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In a similar manner, the dual program can be constructed. 

While this dual program is not of a constrained maximization 

form, it does have linear constraints which have made it com­

putationally attractive. Blau (5), using the theoretical 

results of Passy (56), developed an algorithm to solve gen­

eralized polynomial programs. Blau*s Lagrangian formulation 

made certain assumptions: (1) the constrained signum function 

and the sign of the objective function are known, (2) the 

primal Lagrangian function is of the form 

L(x,X) m g^(x) + m = 1,...,M, (2.75) 

and (3) at the local minima, the optimal values of the 

Lagrange multipliers are strictly positive. This means 

that all constraints are tight or active at the optimal point. 

This condition restricted the use of geometric programing less 

than the original case but left something to be desired. 

One aspect of Blau's algorithm was his use of the separa­

bility of the linear-logarithmic system that gives a solution 

to the dual vector ^ from a given vector of Lagrange multi­

pliers. Based on the linearization, Duffin (22) has shown 

that a geometric program can be defined as a set of linear 

programs. Computationally; this meant that geometric prcsram= 

ming has the potential of becoming as efficient a nonlinear 

algorithm as linear programming has become for linear systems. 

Oleaon (54) extended Duffin's analytical use of the lineariza­

tion principle to develop an algorithm that uses the efficiency 

of simplex linear programming to solve geometric programming 
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problem*. The procedure is based on parametrically changing 

the objective function of a linearized geometric program. This 

method, based on the theory of condensation of polynomials 

(22), consists of three phases. The first converts the geo­

metric program into a log-linear program where all terms are 

expressed as polynomials and all constraints are converted to 

monomial inequalities by means of a weighing function. Also, 

the conversion is made so that all constraints are tight or 

active at the optimal. The second phase solves the log-linear 

program (LPA) to find a feasible solution that allows a geo» 

metric program to be consistent. This step locates the region 

in which the optimal may be found. Finally, another linear 

program (LPB) is formulated consisting of the weights required 

to convert the constraints to monomials. The solution of this 

linear program parametrically changes the weights of the opti­

mal variable until the objective function of the first linear 

program (LPA) is found, such that all geometric program con­

straints are tight. 

Oleson states that the advantages of this procedure are: 

(1) the degree of difficulty or the size of the problem is not 

Increased And (2) the utilizes the simplex linear 

programming routine in a parametric fashion. He also points 

out that its limitation lies in the lack of proof of global 

optimality which is yet to be developed. 

According to Wilde (73), geometric programming has great 

potential; most of it is as yet unrealized. However, in its 
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brief history, the method has been successfully employed in 

several engineering design problems (15, 23, 44, and 56). 

Economic application to resource allocation can be found in 

(21; 23, 33, and 58). Other economic applications, such as 

economic growth models, is treated in (58). Avriel and Wilde 

(1) applied geometric programming to the nonlinear problems 

found in stochastic programming. 

In the above discussion, it has been shown how the tradi­

tional cash flow can be modified by the introduction of a set 

of decisions that either permit or prevent a cash flow to be 

realized. Also, the traditional mutually exclusive cash flow 

estimate was extended to include the complementary or competi­

tive effects of other investments. Once the mean and variance 

of the cash flow estimate is determined, the next problem is 

to find the probability distribution of the risk associated 

with the investment. The treatment of risk or uncertainty in 

the estimate of cash flows was illustrated in the three 

methods of stochastic programming. Specifically, the chance-

constraint programming method (CCP) assumes the probability 

distribution of the random variable to be normally distributed 

and converts the stochastic model Into Ite det^rminiatic 

equivalent. However, the deterministic form also introduces 

nonlinearity into the model. Generally, nonlinear problems 

have presented computational difficulties. However, recent 

developments in this area allow for efficient solutions to 
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large-scale complex problems such as are found in investment 

planning. 

Now let us examine the above method of handling uncer­

tainty or risk in investment models from the standpoint of the 

distributional assumptions. Hillier presents a model based on 

the present worth of a discounted cash flow. Since it is 

known that the net cash flow at any point in time may be posi­

tive or negative, the assumption was made that the net cash 

flows may be assumed to be normally distributed. Hillier also 

illustrates how the individual cash flows may be non=normal, 

but the present worth may be approximated as a normal distribu­

tion based on the central limit theorum. The idea of a 

normally distributed net cash flow has been used in several 

capital budgeting and portfolio models. This normality assump­

tion is also consistent with the present assumption of chance-

constraint programming in regard to the distribution of the 

random variables. Consequently, it has been used frequently 

for the analysis of risk in investment planning. 

At this point, two basic problems exist in regard to the 

net cash flow concept and its normality assumption. The net 

cash flow At tno «T>d of Any period is the difference bef.fesr. 

the investment cost during that period (outflow) and the 

receipts or yield from the investment received during the 

period (inflow). It would be logical to assume that the net 

cash flow would be normally distributed if the two components 

were distributed normally. Unfortunately, this is not the 
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case. If we assume invesunent costs and receipts are random 

variables, the range over which they could vary would be 

restricted to the nonnegative domain. Since both investments 

and receipts constitute tangible cash flows, they must be 

expressed in positive terms. Therefore, it would be desirable 

to have a distribution that is wholly contained in the non-

negative domain yet retains as many of the features of the 

normal distribution as possible. 

Sengupta (59B) has discussed the use of nonnegative distri­

butions in conjunction with stochastic programming. In 

particular, his discussion of the use of the chi-square 

distribution in chance-constraint programming has application 

in modeling capital investment plans. Two aspects of this 

approach are of particular interest. First, the restriction 

of the linear decision rule in chance-constraint programming 

may be replaced with more general functional forms that con­

siderably enhance the scope of application in dynamic models 

that result in nonlinear objective functions. Secondly, it is 

no longer necessary to assume that the decision maker's utility 

function is quadratic or of a specific form as was required in 

the Markowitz (46) Btijdy^ 

In the following sections, the concept of a chi-square 

distribution for the random variables in certain investment 

models will bo explored in the context of chance-constrained 

programming. Two investment models will be developed. A 

portfolio model, originally developed by Naalund (52), will be 
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formulated under the chi-square assumption and the results 

compared to those of Portillo-Campbell (58) who obtained a 

direct solution to the model. Next, a capital budgeting model 

will be developed employing the payback constraint along the 

line of Byrne (7) and Weingartner (72). This model will also 

employ the chi-square assumption in a chance-constraint 

program. 
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CAPITAL INVESTMENT PLANNING MODELS 

Planning of capital investments is concerned not only 

with the facts that risk and interdependence of investment 

proposals exist and should be accounted for in the decision 

process, but planning must also be aware of the way in which 

the model handles these factors. The example of finding the 

optimal cattle feed mix illustrated how the decision maker 

could be misled by following the advice of a model that neg­

lected the effects of uncertainty. It is also possible to 

mislead the decision maker with recommendations that consider 

the effects of uncertainty in an inappropriate manner. 

There exists a wide class of problems in engineering and 

economics where the input coefficients and the resources 

available are random variables, but are nonnegative. This 

characteristic calls for a class of probability distributions 

that are wholly contained In the nonn«»«£5-VA ran**. Tn» nor­

mality assumption of chance-constraint programming would not 

be appropriate in cases such as these. Consequently, if the 

chance-constraint method is to be used for risk analysis, then 

the normality assumption must be replaced with a nonnegative 

distribution. 

Â nonnegative distribution to replace the nozmal must be 

selected in such a manner as to retain as many of the desirable 

characteristics of the normal distribution, while satisfying 

the nonneg«t:J.vj.ty condition. Several diotributionc fall into 
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this class with varying degrees of attractiveness. Sengupta 

(59A) has discussed the potential use of several nonnegative 

distributions in conjunction with stochastic programming. The 

choice of the chi-square distribution to replace the normality 

assumption is a logical selection since the chi-square is in 

fact a squared standard normal and retains the reproductive 

properties similar to those of the normal distribution. 

Secondly, other nonnegative distributions, such as the exponen­

tial, gamma, and poisson can be closely approximated by the 

chi-square distribution. However, the replacement of the 

normal by the chi-square makes the chance-constraint program 

computationally more difficult. This problem, however, can be 

transformed into a generalized polynomial programning problem 

that can be computed very efficiently (54 and 59A). 

The choice of the chi-square distribution to be used in 

the formulation of chance-cons trained Investment models was 

motivated by two reasons. First, the computational difficul­

ties are partially offset by the availability of numerical 

tables for the central and non-central chi-square distribu­

tions; therefore, the extension of risk analysis to 

consideration of various cenfidcnce intervals Is facilitated. 

Secondly, the reproductive properties mentioned earlier are 

extremely useful when examining a series of cash flows that 

are independent randwi variables, i.e., the property of a 

variate by which the sum of a number of varlates having a 
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fixed distribution reproduces the same distribution in form. 

To illustrate the use of chi-square in chance-constrained 

programming, consider the model developed by Sengupta in 

(59A and 59B). 

max Z ® £ jC jX j, i * l,,,,,!; (3.0) 

subject to 

prob (Lj^aj^jXj < bj^) > (3.1) 

> 0, (3.2) 

where the parameter a^j, Xj, and Cj are defined as before. 

Assume the resource vector b^ is composed of mutually independ­

ent random variables distributed chi-square. The degree by 

which each constraint must hold is preassigned by the decision 

maker (i.e., the condition must hold 95% of the time, thus 

.95). 

First, consider each b^^ in the resource vector b to be 

m Jt. A  m A #  % %  A  m ̂  ̂  ^  1  ̂ ^  _ A - *  ^  ^  .  *  w&ftjb —caiu^uM0tA.o WJ.U&1 cvAiwwAk Vt <00 IllCSâSB 

and variance V(b^) « 2b^, thus, tho nonnegative frequency 

function of (b^) can be expressed as 

f(bj) = (2''''^'^V(bj/2))-Vot^'''-' 

oxp (=>b^/2)dt. (3.3) 

Since we know that the available resources must be greater 

than or equal to their allocation, thon 

prob (X^(b^) > Eja^jXj) « 1, j = 1,...,J. (3.4) 

/2)-l 
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Now the only remaining problem is to find the upper bound on 

f(b^) that satisfies the confidence limits a^. Recalling that 

the upper limit on the integral of f(b^) meets this condition, 

we can define (3.4) as 

prob (X^(bj^) < w) « (3.5) 

where w is the upper bound of b^ that satisfies the confidence 

limits a^. 

To illustrate, let the mean value of b^ be 10 and the 

confidence limit bec*^ « 0.99. Therefore 

prob (X^(IO) < w) . 0.99, (3.6) 

using the chi-square tables for the confidence interval of 

0.99 and degrees of freedom 10, we find w to be equal to 2.56. 

Thus, the deterministic equivalent linear program of the 

chance-constraint model is 

max Z " EjC j > i"l,j ̂ 1,...,J; (3.7) 

subject to 

- 2-56# (3.8) 

X > 0. (3.9) 

By comparison, assume the random variable b^ is normally dis­

tributed TJith the SCTC ir.ccri ar.d variance 

mean: E(b^) = b^ = 10, 

variance: V(b^) « 2(b^) a 20. 

Recalling that from the cumulative standard normal Ffw), w 

jfoufld îthftfe 
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F"l(l -a) « - 0.99) « -2.33, (3.10) 

and the deterministic equivalent of would be 

\ + V(bj^)^ . F°l(0.01) = 10 + (20)% . -2.33 . 

-0.415, (3.11) 

thus, the constraint equation corresponding to (3.8) is 

Zja^j < -0.415. (3.12) 

The optimal solution for this problem is x > 0 vAiere the solu­

tion to the Chi-square formulation could obviously be better. 

This simple comparison illustrates the impact of the normality 

assumption on models that require a nonnegative distribution. 

In the next two sections, capital investment models will 

be discussed in ̂ ich the chi-square assumption will be used 

in the context of chance-constraint programming. 

Portfolio Expansion Model 

In this section, we will develop a portfolio expansion 

model along the lines of Naslund (51). The model will be con­

cerned with the optimal timing or planning of investments in 

order to maximize the total expected value of the portfolio at 

some future horizon point (planning interval). This model 

differs from the more traditional portfolio selection model 

that is static in nature and io concerned with determining the 

optimal proportion of the portfolio that should bo invested in 

various types of securities. The portfolio expansion model is 

dynamic In nature and eim generally described as the problem 
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of determining the optimal amount to invest in the portfolio 

at each point over the planning interval. The model is con­

strained by the amount of risk the investor is willing to take, 

expressed as a loss constraint, and the availability of capital. 

The interrelated risky nature of the portfolio expansion model 

is well suited to chance-constraint programming employing the 

zero order rule for investment planning. Before describing the 

model, we will discuss briefly some of the research on port­

folio investment. 

There exist several discussions in the literature of the 

choice between holding risky assets, such as in a portfolio 

versus holding money. Tobin (68), for example, makes the 

assumption that the investor will venture some proportion of 

his investment dollar in risky assets. That proportion is 

subject to many things, such as risk, taxes, interest rates, 

and etc. Tobin's model develops an indifference map between 

the proportion of the investor's venture capital held in cash 

versus in his portfolio. The indifference curves are based on 

the mean and variance of the return on investments. Tobin 

suggests that, by the use of such an indifference map, it 

would be possible to study the effects of changes in interest 

rates, taxes, and risk level on the proportion of capital 

allocated to risky investments. The risk involved in port­

folio selections is derived from the stock market prices over 

timQ. These prices are only known probabilistically. 
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The stock market is generally assumed to be a perfectly 

competitive market, in that, if certain stocks appeared to be 

too low at some point in time, investors would start buying 

causing the stock price to increase. In general, situations 

of this nature are caused by the availability of information 

and there is no reason to assume that information is made 

available to all investors in a systematic way. If the 

changes in price, due to the availability of information, are 

assumed to be independent and identically distributed random 

variables with finite mean and variance, the central limit 

theorem would suggest that the price change over time may be 

normally distributed. 

Various modifications of the normality assumption have 

been suggested to find decision rules for the investor. 

Naslxind based his dynamic portfolio model on tiie normality 

assumption developed by Osborne (55). However, a strong 

criticism of the normality assumption was put forth by Fama 

(25) based on empirical data. He found that the empirical 

distribution had a larger area under the extreme end of the 

tails than the normal distribution. From this, he postulated 

that investors cannot respond fast enough to take Adv#ntA*e of 

every price change; therefore, he will always pay a little 

more and obtain a little less than an optimal. The empirical 

distribution put forth by Fama is called the stable Paretian 

distribution (23). 
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If the intent of Fama's argument in respect to the 

selection of a probability distribution to represent the 

random variables (stock prices) is examined, a strong case for 

the chi-square distribution can be put forth. In addition to 

the nonnegative characteristics mentioned previously, the 

ability to approximate other distributions with the chi-square 

would enhance its operational desirability. 

The portfolio expansion model developed in this section 

will assume the random variables are distributed as independent 

chi-square. The risk associated with the portfolio decisions 

will be encompassed in a chance-constraint program. The 

resulting nonlinear programming problen will be solved by 

means of generalized polynomial programming (geometric program­

ming) . 

Consider a rational investor who wishes to maximize his 

expected gain in the stock market that will increase the value 

of his portfolio at the end of a specified horizon. Assume 

the investor has allocated funds for his consumption needs up 

to the horizon and knows what funds will be available for 

investing at each period. However, the decision to invest the 

available funds in risky stock at some period or to hold the 

funds in cash for later investment is dependent upon two con­

straints. First, the loss constraint which sets a probabilistic 

limit on the possible losses beyond a specified amount; and, 

SGCcndly, tlie capital coHsLealnE which also specifies a proba­

bilistic limit that investments at: some point should not exceed 
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the available funds which varies according to accumulated 

capital gains. 

The problem can be expressed in the following manner 

P. - P. , 
max Z - EiL.xA-^ —)), (3.13) 

^ ̂  'i-l 

subject to 

P. - P, _ i  
prob (x. (—5 *—) > -L. ) > a. 5 (loss constraint) (3.14) 

1 ^i-1 ^ ^ 

P J 1 " P 4 O 

prob (Xj^ < + LjXj_i ^ (3.15) 

(capital constraint) 

Xj > 0, (3.16) 

where 

x^ is the accumulated amount ($) invested in stock or 

stock group in period i, 

Pj^ is the stock price or group of stocks priced in 

period i, 

is the maximum loss that the investor is willing to 

accept 100(a)% of the time, 

is the risk level for losses at period i, set by 

k^ is the capital accumulation other than from returns 

from earlier investments, 

is the risk level for the capital constraint in 

period i. 
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P. - P, _ i  

For simplicity, let a. • -*5 — for the change in stock 
i U-1 

prices over the interval i-1 to i. Also assigne that the 

change in stock prices observed in previous periods 

Pj » - Pu_2 
( ) also be denoted as a. as (j goes to i). 

fj-2 J 

Assume that the change in stock price is a random varia­

ble distributed as an independent chi-square with mean (a^) 

and denoted by 

The loss constraint (3.14) is specified by the investor 

to be the minimum value he will allow his portfolio to assume 

at some point in time. Thus, we can express the value of the 

portfolio of the i^^ period as the sum of the value gained 

a^x^ during the interval plus the min value set by the 

investor or 

®i*i " > 0. (3.17) 

Sy âdulng ZCi LoZu o1uc;d, Lisw luBB cvneLralnL ia o£ i.he form 

defined in (3.14). Likewise, the capital constraint can be 

thouglit of as limiting the stock buying to be within the funds 

available. Here too, tho investor has set the amount of money 

k^ he is willing to invest in the portfolio at some time i. 

The total funds available for investing is the sum of the money 

received from previous stock trading and the new allocation of 

funds from the investor at time i. 

k^ + LjajXj* (3,18) 

where j denotes previous activity in the portfolio. By using 



www.manaraa.com

51a 

(3.25) as the resource vector, then we have the constraint 

defined in (3.14). 

To simplify computation, we will consider the same three-

year planning horizon as did Naslund, as well as the data, in 

order to compare the solutions. Next, we can expand the model 

for the three*>period planning horizons 

max Z « E(aiX^ + a^Xg + «3X3), (3.19) 

subject to the probabilistic loss constraint for each period 

prob (aj^Xj^ > Lj^) > (3.20) 

prob (agXg > L2) > «2» (3.21) 

prob (a3X3 > L3) >«3, (3.22) 

also subject to the capital constraints that are also probabi­

listic in the second and third periods. The initial cash 

endowment in the first period is not subject to uncertainty. 

(3.23) 

prob (xg < kg + «1*1) > «2» (3.24) 

prob (X3 < kg + aj^Xj^ + agXg) > n^, (3.25) 

*1*2*3 - (3.26) 

Table 1 contains the Initial values mmmigned by Naslund (5l), 

The chance-constrained programming model with chi-square 

variates was first developed by Sengupta in (59A and 59B). 

This development will be used in the foirmulation of the port= 

folio model. 
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Table 1. Initial values of Naslund's portfolio model 

Loss limitation: 

Values Confidence level 

period 1 
h 

ar -1300 
^1 

a 0.95 

period 2 4 
nt -1000 

^2 
0.95 

period 3 a -1000 ^3 
a 0.95 

Capital limitation: 

period I 4 
7000 

period 2 a 5500 a 0.99 

period 3 kj a 9000 "3 
a 0.99 

Change in stock prices: 

mean value «1 a 0,05 

'2 
a 0.05 

5, a 0.05 
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Now consider the distribution of the quantity 

^ (3.27) 

If the mean value of each a^j can be approximated by an even 

integer 2g^j « *ij' then the exact distribution can be defined 

as 

prob (Y^ > Yq) . EjZgdj^^ prob (X^(2s) > ̂ ), (3.28) 

where j « 1,...,J, s * and dis a constant 

he Xj's d 

(St 4 - «) 

involving only the Xj's defined as 

f.(0) 

"j. -

where 

X. - X. x.y -â. J2 
f (0) = 1, (-1- 1 + . (3.30) 
^ i^j *j *j 

Fortunately, simpler approximations of the distribution of Y^^ 

are avaiiaoia (3y) which can be employed in momt cases. For 

example, let be approximated by 

Y^ « kj^x2(h), (3.31) 

where the degree of freedom of Y^^ ig 

j®i jXj) 
h « — (3.32) 

and the weighing function of noncentrality of is 

^1*11*1 
\ (3.33) 

^j*ij*j 
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We can now express the general chance-constraint equation as 

prob (k^X^(h) < b^) >a^, (3.34) 

An approximation of (3.34) often referred to in mathematical 

statistics (59) where equality models must be utilized on the 

basis of the inequality 

< Lja^j, j - 1,...,J. (3.35) 

By using the upper bound of (3.35) for the approximate distri­

bution of can be expressed as 

(LjÎL£i)x2 (E i ). (3.36) 

Now we can redefine (3.36) in terms of the approximation of 

as 

prob (X^CCja^j) < ^ 7 ^ ) > «t* (3.37) 

-rirj 

The cumulative distribution of (3.37) is of a central chi-

squar© variate with degrees of freedom h » Zja^j 

F(w) « (2^/^r(J/2)"Vot('^/2)"^ . exp (-t/2)dt. (3.38) 

'w^0ir& 

w « (2Ù5J), (3.39) 

^j*ij*j 

By using the chi-square tables for various combinations of 

and h, the value of w can be read5.1y For exwnpic, 
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if • .99 and h « 2.0, the chance-constraint equation 

would be 

prob (X^(2.0) < w) - .99, (3.40) 

the value of w can be easily found to be 9.21. Thus, for any 

combination of the tolerance measure and the degrees of 

freedom h, the upper bound of the cumulative distribution 

(3.40) can be found. Therefore, the chance-constraint equation 

can be expressed in its deterministic equivalent 

Vj®ij*j ' *i%j*ij*j - (3.41) 

Since the above is a concave function of the vector x for all 

> 0, the final deterministic model for the chance-constraint 

programming can be expressed as a convex programming problem 

min w » -ZjCjXj, (3.42) 

subject to 

b^E^â, ̂x. - >0, i = 1 1, (3.43) 

*1 *^i ̂  ** lg«.«;Jo (3.44) 

Returning to the portfolio model, (3.17 through 3.23), we 

con rearrange (3.22) and (3.23) to correspond to the form in 

(3.37) by multiplying through by -a^x^and -x?, respectively, 

resulting in 

prob (-a^x^ < kj - Xg) > ng. (3.45) 

Following the same procedure 

prob (-a^x^ < egXg - kg - Xg) > ng. (3.46) 
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Multiplying both equations by minus one, the portfolio model 

(3.18 through 3.20) can be formulated as 

max Z « E(a^X2 + «2*2 *3*3^' (3.47) 

subject to 

prob («1»! > Lj^) >aj^, (3.48) 

prob («2*2 i ̂ 2) > «2» (3.49) 

prob (a^xg > Lg) ><*3, (3.50) 

X|^ < k, (3.51) 

prob (a^x^ > X2 - k2) > (3.52) 

prob (a^x^ + 82X2 > *3 - kg) > n^. (3.53) 

To transform the portfolio model to the convex programming 

form, we employ the chi-square approximation developed above. 

First, find the value of for each probabilistic constraint 

as illustrated in (3.40). For the first three constraints, 

cuts BXH!i o£ the mean h is .05 anal trie 

prob (X^(.05) < Wj^) * .95, for W2, and Wg. (3.54) 

Using the tables for a control chi-square variate, we find 

w^ * 0.192. The last two constraints can be handled in a 

siiir.ilâr uiSTiner. For (3.51) » .05 and the tolerance rrieasure 

0 .999, thus 

prob (X^(.05) < W5) a .999, (3.55) 

find w- to bft The final constr&iRC has an h, = .10 
J D 

with = .99, thus 
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prob (x2(.lO) < w^) « .99, (3.56) 

resulting in = .663. The values of can now be anployed 

in the above chi-square constraint (3.43). 

The portfolio model (3.47 through 3.53) can now be formu­

lated as a convex programming problem 

min w • -.05x^ - .05*2 - .OSxg, (3.57) 

subject to 

-I300(.05)x^ + .192(.05)x^ > 0, (3.58) 

-1000(.05)X2 + .192(.05)x| > 0, (3.59) 

-1000(.05)X2 + .192(.05)x^ > 0, (3.60) 

7000 - Xj^ > 0, (3.61) 

(xg - 5000)(.05)xi - .605(.05)xJ > 0, (3.62) 

(xg - 9000)(.v5x^ + .05x2) ' .663(.05x̂  + .OSx^) 

a. Û, (j.03; 

X^ > 0. (3.64) 

Clearing terms in the model, we have 

min w » -.05x^ - .OSxg - .05x3, (3.65) 

BubjftCt to 

-65XJ^ + .01X2 > 0, (3.66) 

-50X2 + .OLX^ > 0, (3.67) 

-50=2 T .OLXG > 0, (3.68) 

7000 - XJ^ > 0, (3.69) 
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450x^ + 450x2 - .OSx^x^ - .OSxgXg - .033x^ 

- .033x2 > 0, (3.71) 

> 0. (3.72) 

In the first three constraints, if we rearrange the terms by 

adding the left-hand term to both sides then dividing through 

by the same term, we have 

Xj^ > 6500, (3.73) 

Xg > 5000, (3.74) 

X3 > 5000. (3.75) 

The only deterministic constraint can be expressed in its 

original form 

Xj^ < 7000. (3.76) 

The last two constraints can be simplified in a similar manner 

.OOOZx^ - .0001x2 >1, (3.77) 

-X^^X2 + .011*2 + .Ollx^^xgxg + .00007x^ 

+ .00007x^^x2 >1. (3.78) 

The portfolio model is now in the convex programming form. 

Nonlinearity is introduced in the last constraint equation. 

The problem can now be solved by geometric programming, or 

more specifically, generalized polynomial programming (54). 

The procGduTG for the transformfikt-J,on og mcrdei into a form 
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compatible with the geometric programming algorithm will be 

summarized at each step. 

The model will be converted back to a maximization problem 

so that the dual will be a minimization problem consistent with 

the discussion earlier. Likewise, the constraints will be 

transformed so they will be less than or equal to unity. The 

first four constraints are all monomials which can be converted 

in a like manner. For example 

> 6500, (3.79) 

can be divided by the right-hand side to give 

(3.80) 

which is the same as 

^ (3.81) 

therefore, dividing through by the right-hand side again 

6500X-* < 1. (3.82) 

The last two constraints can be transformed by dividing through 

by minus one. The problem can again be presented as 

max Z tx .05x^ + .OSx^ + .OSx^, (3.83) 

subject to 

6500x~^ < 1, (3.84) 

SOOOxJ^ < 1, (3.85) 

SOOOxgl < 1, (3.86) 
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.007xi < 1, (3.87) 

-.OOOZx^ - .0001x2 - (3.88) 

x^^X2 - .OllXg - .Ollx^^XgXg - .OOOOTxj^ 

- .00007x^^x2 - (3-89) 

The first step in the formulation process is to express 

the coefficients in terms of a new variable, say x^. The 

value of the variable is chosen such that its exponent is 

equal to the ratio of the logarithm of the coefficient to the 

logarithm of some normalizing constant. Computational results 

have indicated that the use of 1000 as the normalizing constant 

tends to reduce the number of iterations. For example, the 

variable to replace the coefficient in the first constraint 

could be found by 

6500/ta 1000) (3.90) 

In a slmllasf mannAP. thA r-i i n emrh of t-v»« onnnlri one 

can be expressed in terms of x^. The constraints can now be 

expressed as 

%4 (3.91) 

< I, (3.92) 

< 1, (3.93) 

x-0.786^^ < 1, (3.94) 

< 1, (3.95) 
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"'iS -

- < 1. (3.96) 

This completes the normalization of the coefficients. 

The next step is to convert the objective function into a 

constraint. This is done to facilitate parametric changes of 

its corresponding dual variable as indicated earlier. Again, 

introduce a new variable Xg such that the new objective func­

tion is 

min (3.97) 
*5 

subject to 

*5 - + X4^"^**X3, (3.98) 

dividing both sides by X]^X2*3 Sives 

X „-0.569 -0.569 -0.569 

*1*2*3 - *2*3 * *1*3 * *L*2 ' 

select another variable x^ such that 

-0.569 -0.569 -0.569 

— — < -=-z—*— + -a-z—< x,. (3.100) 
*1*2*3 - *2*3 *1*3 *1*2 " ® 

The above inequality is used to form 

x  %-0.569 ^-0.569 ^-0.569 

*1*2*3*6 " ̂ *2*3*6 * *1*3*6 ^ *1*2*6 " 

By introducing yet another variable x^ that will satisfy 

JÇ-0.569 JÇ-0.JÔ9 ^-0.569 

*1*3*6 - *1*2*6 " "7 -
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we can now convert the two left terms to monomials by intro­

ducing the weighing variable e 

x-0.569 x-0.569 

< 1 and (i . e^^XgXgX^ - (3.103) 

where 0 < e^ < 1. We can also express the terms on the right 

of (3.102) as 

-0.569 

where 0 < eg < 1. The first expression in (3.101) is amended 

by the weighing variable e^ 

Xc 
< 1, (3.105) 

®3*1*2*3*6 

where 0 < e^ < 1. The tightness constraint is added for the 

variable x 

26 
®4 

6 

< 1, (3.106) 

where 0 < e^ < 1. This completes the conversion of the objec­

tive function. 

The third step is to convert the constraint equations 

into monomials that can later be transformed into a log-linear 

program. The writer is grateful that the first four equations 

are already monomials requiring only the addition of the weigh­

ing variables 

eglx^'Z^lx"! < 1, (3.10?) 
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®6M*"^*2^ - (3.108) 

< 1» (3.109) 

®8'*4'"°^*1 - 1" (3.110) 

The fifth equation can be treated as before 

- *8* (3.111) 

such that 

x-0.697 „-0.750 
Xa Xa *9 

^ I ««• Trr-ip~ < 1. (3.112) 

The last constraint can be converted to a set of monomial 

equations by the addition of new variables, one for every 

pairwise decomposition. Start by adding the last two terms 

to both sides of constraint (3.96) and introduce Xg 

_n A9n 9 
4- X4 Sj^-X2 ^ "9» 

dividing through by Xg gives 

V"Sr~^' X, ' 5 1. (3.U4) 

âiiu 
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converting the latter, we have 

-0.620-1 -0.620 -1 2 

Again adding the last term in (3.114) to both sides and adding 

the new variable X j ^ q  

%-lx^ -1.469 -1.469 

o.u?) 

the two sets of terms can be converted to monomials as before 

i TTT-^ 5 I. (3.U8) 

,-1.469 

^ - ™ TTTI-T^ £ 1. (3.119) 

adding the tightness constraint for Xg 

^ < 1 ,  ( 3 . 1 2 0 )  
*13 

where 

0 < e^ < 1 and 0 < Sg < w, (3.121) 

0 < e^ < 1 and 0 < Cj q̂  < «, (3,122) 

0 < ey < I and 0 < e^^^ < oo, (3.123) 

0 < eg < 1 and 0 < e^g ^ «»» (3.124) 

0 < < 1. (3.125) 

The resulting geometric programming problem in monomial 

form is 
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min w o (3.126) 
*5 

subject to 

(normalizing constraint) 

.001x^<l, (3.127) 

(objective function) 

< 1, (3.128) 

(1 - e^)-lx^lx;lx;\0'565 < (3.129) 

ejS < 1. (3.130) 

(1 - e2)-^x-^lx6V*^^^ < 1, (3.131) 

*3^*1^*2^*5*6^- 1* (3.132) 

«4^ < 1, (3.133) 

(loss constraints) 

®5^*1^*4*^^^ < 1. (3.134) 

®6^*2^*4*"^ < 1, (3.135) 

e^^x^^xj-^^^ < 1, (3.136) 

(capital constraints) 

< 1. (3.137) 

e^^xj^xg^x;®'^^^ <1, (3.138) 

(i - < 1, (3.139) 
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< 1, (3.140) 

(1 . < l, (3.141) 

*2*9 — ^* (3.142) 

(1 . < 1, (3.143) 

®12*10 — (3.144) 

(1 •* ® 12^ *2*3*9*4 * — ^> (3.145) 

®Î3*8 - (3.146) 

(geometric programming weighing constraints) 

0 < ej^ < 00, (3.147) 

0 < 63 < 1, (3.148) 

0 < e^ < 1, 0 < eg < 00, (3.149) 

0 < ES < 1; 0 < EO < CO, (3.150) 

0 < EG < IS 0 < EJ^Q < 00, (3.151) 

0 < EY < 1, 0 < EJ^J^ < 00, (3.152) 

0 < eg < 1, (3.153) 

0 < < I, 0 < EJ^2 «»• (3.154) 

The computational dual of the above problem can be 

expressed as a log-linear program 
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max Z B In .OOly^ + In + In (1 - e^)"^y2 

+ In «2^4 • In (1 - • In O3V5 

•f In + In e^Vg + ^ e^^yg + In ey^y^g 

• In egVj^j. * ̂  Gglyjg + In (1 - eg)"^?!] 

+ ^ «10^14 + 1" (1 " ^ «11^16 

+ In (1 - ej^j^)*Vi7 + In e^Jy^g 

+ In (1 - ei2)"^yi9 ^ ̂  *13^20» (3.155) 

subject to the log-linear constraints 

yg = 1, (3.156) 

-75 - fs - yg + *11 + y12 - ^14 - y15 - ^lé ° "• <3.157) 

-72 - 73 - Ys - Yô - y, + y 13 + y 15 + ̂ ŷ f, 

*> y,7 = 0. (3.158) 

"^2 - yj - y 10 + 5^17 + y 18 ° o, 0.159) 

6.907y^ - 0.569y2 - 0.569y2 - 0.569y^ + 1.27lyg 

+ 1.233yg + 1.233yj^Q - 0.786yj^j^ - 0.697yj^2 " 0.750yj^3 

- 0.ô2ûyj^4 - û.62ûy^a - 1.469y^y - l.sôSy^g = 0, (3.160) 

'^2 ' ̂3 ' ̂5 ' ̂6* y? * 0, (3.161) 

•y12 ' y13 + yzo * (3.102) 

•y14 " y 15 ° y 16 ' yi7 y 19 " (3.163) 
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®g» ®i^o* ^11* ^12 * (3,164) 

®3» ®5» ®g» ®7» ®g» ®j^3 " 1 « (3,165) 

The solution of the portfolio model is given below along 

with the solution of Porti1lo-Campbe11 (58), who used the 

normality assumption of chance-constraint programming and 

solved the problem by SUMT. Also, the original (decision 

rule) solution of Naslund (51), who only solved the linear 

portion of the model, is given in Table 2, 

The nonlinear solutions for the chi-square case is con­

sistent with that of the nonlinear normal, in respect to 

and Xg, The value of X2 is in line with that of the linear 

case. The difference between the values of for the two 

nonlinear cases is not apparent. In general, the solutions 

for the chi-square and the normal cases were expected to be 

quite close since a chi-square can approximate a normal dis-

•" 4M 4 W* $ 4" 4 •" #0** # ^ M ^ ^ A MA A ^ ^ A — A —— — - — 
^ ^ w WAAW V & ikV»4a\AWiil V ^ k./^ C 

was close to zero. 

It should be noted that the procedure provides only an 

approximate solution. The geometric programming algorithm 

employed does not insure a global solution; thus, a stopping 

rule is used to determine the point of termination. The 

stopping rule used for this problem was set at sum of squares 

Zj - Cj less than 0,001, 
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Table 2. Solutions to portfolio model 

Decision rule Direct solution Direct solution 
linear case nonlinear (SWT) nonlinear (G.P.) 

(norm, ass.) (norm, ass.) (chi-square ass.) 

* 5900 « 6581 Xj^ = 6597 

Xg « 5500 Xj * 3528 X2 = 5588 

Xg = 5000 x^ = 5024 Xg = 5028 

Z « 820 Z* » 756 Z* » 861 

Table 3. Convergence of geometric program solution 

Iteration Computed Sum S 
number Z max Zj - Cj 

0 2.1813 4.6651 

1 0.4733 3.4092 

2 -1.4393 2.2435 

3 -4.5842 1.2173 

4 -6.6662 0.6022 

5 -6.6921 0.0459 

6 -6,7431 0,0017 

7 -6.7581 0.1183 X 10 

8 -6.7581 0.5101 X 10 
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Table 4. Values at the end of the eight iterations 

Basic variables Non-basic variables Log value at e^ 

^1 
S 0 

^3 
a 3.238 X lO'lU «1 S -2.00248 

^2 
S 0 

^5 
a 6.730 X 10-4 ®2 3 -0.74444 

^4 
s 0 

^6 
a 2.615 X 10-9 ®3 S -0.45413 

^6 
B 0 s 5.002 X lo'll ®4 a -0.47804 

yi a 0 
^13 

a -6.357 X 10"* ®5 ts 0.08616 

^8 
a 0 

^15 
a 4.011 X 10-12 ®7 m 0.03922 

^11 
a 0 

^16 
a 3.924 X 10-* ®8 as -0.83326 

^12 
a 0 

^19 
a 5.560 X 10-10 «9 m -0.15900 

^14 
a 0 ®10 at 0.76572 

^17 
a 0 ®11 -0.95129 

^18 
a 0 ®12 s -0.20702 

^20 
a 0 «13 s 0.24686 
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In the next mectlon, the chi-iquare «atumption will be 

uied in the formulation of a capital investment planning 

model, in which the timing of investments is dependent some­

what on the cash flows. 

Capital Budgeting Model 

In this section, we will formulate a capital budgeting 

model to allocate capital investments over a finite planning 

horizon. The concept of risk will be divided into two classes. 

The risk associated with "opportunity loss" will be structured 

as a payback constraint in which t-he investor wants to recover 

his initial invested capital within a specified period in 

order to take advantage of new investment opportunities. The 

concept of payback as a constraint is discussed in (7 and 71). 

To protect against "actual losses" or cash flow shortages, a 

liquidity constraint is introduced that permits borrowing to 

meet the liquidity condition. To guard against misuse of 

borrowed funds, a penalty cost is added to the objective func­

tion. The liquidity constraint is developed along the lines 

of linear programming under uncertainty. The model is formu­

lated in the framework of a chance-constrained program 

utilizing the zero order rule. The random variable will be 

assumed to be distributed as an independent chi-square. The 

two-stage decision rule of LPUU is incorporated within the 

structure of the model. Each capital investment will consist 

of A point-input And gtremm-ovtput to generate the cash 
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flows. The investment cost c^j for each project i at each 

point j is known or estimated. The flow of funds both into 

and out of the firm is controlled by the decision parameter x. 

In general, we can think of the variable as the proportion 

of the total capital expenditure to be committed to the i^^ 

group at time j. Therefore, the value of Xj^j for each project 

will be one if accepted or zero if not accepted at time j. 

Correspondingly, the decision governing the inflows x^j^ can be 

thought of in a similar manner. The returns from an invest­

ment x^j can be denoted as r^j when observed at the j^^ point 

in time or r^^ when the return is measured k periods after the 

start of the project. This case would correspond to the k^^ 

payback period or the discounting interval in traditional cash 

flow analysis. The symmetry of the cash flows can be seen in 

Figure 1. 

First, we can structure the payback constraint that will 

allow for additional profit opportunities by increasing the 

available funds for reinvestment. In general, this is accom­

plished by minimizing the payback period thereby increasing 

the velocity of capital funds. To provide additional freedom 

of selection, we will assume that any project may be slid both 

forward or backward to take advantage of available capital. 

This assumption may raise some question but for simplicity we 

will asstme that all projects can be moved without penalty. 

Now the payback constraint can be expressed as 
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JQ H H 
Rj -P' Rk 

Figure 1. Cash flow diagram 
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prob (Ei(EkTik)*ll + '^lL*lk^ 

~ ^ » (3,166) 

where k= 1,...,K, k' = 1,...,K-1, k = k*, i = l,...,!, and 

j = 1,...,J. For simplicity, we can denote the above as 

prob (Rj^ > Cj) > a. (3.167) 

This will set the upper bound on the investments undertaken at 

each period. The payback constraint serves the some purpose 

as the capital constraint in the portfolio model. Byrne 

et al. (8) has noted that the flow of returns is from aggre­

gated sources that may or may not be interrelated but may be 

approximated as a series of independent random variables 

(normal or, in our case, chi-square). 

Next we will formulate the liquidity constraint and its 

two-stege decision rule. The liquidity condition can be 

structured from a set of "balance sheet" variables. First, we 

riAfino M, , 55 the total svail-blc ct the cr.d cf 

each period. This is equal to the starting balance of the 

next period. Let Mq be the initial capital available at the 

start of the planning period. The «mount of cash on hand (or 

equivalent) tc retain liquidity can be denoted as Lj. This is 

analogous to the loss constraint in the portfolio model. Since 

we can borrow funds to meet our liquidity level, we can denote 

Wj as the amount borrowed at the end of the period. We will 

assume excess funds will be used to pay back loans incurred at 

earlier pcriodo. The cash flew of ir»ve«tment eo«t e«n be 
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denoted as Cj as seen in the payback constraint. We can first 

define cash flow of returns as the amount received at j from 

all on-going projects i 

Rj = (3.168) 

We can now examine the workings of the liquidity constraint by 

letting 

j = 1: MQ - EiC^i « if < Lj_ 

then (3.169) 

j a 2; - ^j^="£2*i2 " ̂i®i2*i2 ° ̂2' (3.170) 

(Wg found as above) 

j ® 3i M2 ~ ̂ i^^i2^il ̂  '^il'''i2^ ~ ^i^i3'^i3 ^ ̂3* (3.171) 

Since is composed of Mq + Rj - then we can rewrite the 

cash flow of returns as 

Rj ® ^ ̂ ij—l^'iZ ^ ••• ^ ̂ il*ij^* (3.172) 

â^aO Wo Côili wOrriMi.110 ucLiiio wy Ljuig 

Kj = Lj «= Mq, (3.173) 

since both Mq and all levels of Lj are known. We can now 

express the liquidity constraint 

R, - C, - K, + W, > 0, (3.174) 
J J J J 

where Rj • Cj indicates the balance of the two cash flows or 

the remaining funds (+) after committing investments at j. Kj 

sets the lower bound of the treasury. If the difference 

between Rj - Cj is less than Kj, then the firm must borrow 

funds to cover the difference. Since the use of borrowed 
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capital is not free, we will add a penalty cost to the objec­

tive function to discourage over borrowing. Thus, the 

objective function can be written as 

max Z = E(Rç - - EjPyWj), (3.175) 

where Pj is the penalty cost for borrowing funds. The terminal 

cash flow is denoted as - C^. The liquidity constraint is 

structured as a two-stage linear programming under uncertainty 

model. The constraint, while probabilistic, operates dif­

ferently than the other chance-constrained equations. 

To examine the mechanics of the model, first lot us 

express the model in the CCP form 

max Z = E(Rç - - ZjPjWj), (3.176) 

subject to 

prob (R^ > Cj) > a, (payback constraint) (3.177) 

prob (Rj - Cj - Kj + Wj > 0) > (3.178) 

(liquidity constraint) 

Notice that Cj is the seme in both constraints and that R^ and 

Rg are random variables composed of a series of independent 

chi-square variates. Next, we can describe the process of the 

combined model. The first step is to find an estimate of C ̂ 

by letting 

prob (X^(R^) < Cij) = 1 - a, (3.179) 

thus, Cj is the maximum allocation of investment funds at 

period j that satisfies the payback constraint. Next, we can 

find 
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prob (X^(Rj) < » 1 - )3, (3.180) 

where 

Sckw = Gj - Kj + "r (3.181) 

Since Cj is estimated at Cj and Kj is known, then Wj can be 

found. The only remaining step is to determine the penalty 

cost for borrowing that will constitute the second-stage 

decision rule for the liquidity condition. 

A sample problem was structured that consisted of three 

projects and three time periods. The resulting deterministic 

equivalent and its geometric program follows the procedure 

discussed earlier and will not be stated. 

A sample problem was developed using arbitrary data to 

illustrate the procedure. The results indicated that all but 

one project was selected in the first period and the remaining 

project in the second. Borrowed funds were needed to meet the 

48 #0% ̂  4*  ̂ Jk 1 Jl it m m M Jt ^ ^  ̂ ^ — A—•. _ _ — - ^ A— . -
WWAIO U U'VA U OCl i. « Xilt? 

results, in general, are consistent with Byrne's model (7 and 

13) where normally distributed random variables were used. 

However, the estimation and computation procedures wore much 

simpler. 
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SUMMARY AND CONCLUSIONS 

The decision maker concerned with the planning of capital 

expenditureg must consider both the timing of capital invest­

ments and the risk associated with cwmitting funds. This 

investigation has put forth the idea that the analysis of risk 

of an interrelated investment plan can be accomplished by 

chance-constrained programming (CCP) using the computational 

procedures of geometric programming. The basic assumption for 

the analysis has been made that the chi-square distribution 

approximates the occurrence of the chance variable. The pro­

cedure was illustrated in a portfolio expansion model and the 

results compared to previous solutions under different assump­

tions and procedures. Also, e capital budgeting model was 

developed which incorporated the two-stage decision rule of 

linear programming under uncertainty. The model employed a 

payback constraint to handle "opportunity losa" tyoA nf M 

^^le a liquidity constraint is included to handle the more 

traditional accounting losses. 

In light of the investigation just completed, the follow­

ing conclusions may be stated: 

1. When the chance variable is nonnegative with a 

positive finite mean, the procedure developed herein 

will yield a more precise solution than fr«n those 

methods previously available. 
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2. The computational problems associated with approxi­

mating a nonnegative parameter with a standard normal 

distribution are relieved by the use of the chi-

square distribution. 

3. Geometric programming procedures reduce the computa­

tional difficulties normally associated with chance-

constrained programming. 

Some suggestions for future research are: 

1. The procedure could be expanded to include the 

solution of the tolerance or confidence limit 

directly as a function of the sample size and its 

related cost. 

2. Application of safety-first programming as an adjunct 

to the procedure developed herein would be useful in 

capital investment planning. 

3. The phasing of capital expenditures demonstrated by 

this procedure could be employed in a model for 

capacity expansion and growth of an organization. 

In conclusion, the procedure and the models have illus­

trated the potential application of stochastic nonlinear 

progrfimming as a method cf cnalyzing scn-iS of the problems that 

confront the capital investment planner. 



www.manaraa.com

77 

LITERATURE CITED 

1. Avrtel, M. and D. Wilde. Stochastic geometric program­
ming. Princeton Symposium on Mathematical Programming. 
Princeton, New Jersey, Princeton University Press. 1971. 

2. Babbar, M. Distribution of solutions of a set of linear 
equations with application to linear programming. 
Journal of American Statistical Association 50:854-869. 
1955. 

3. Babbar, M. Statistical approach in planning production 
programs for interdependent activities. Unpublished 
Ph.D. thesis. Ames, Iowa, Iowa State University Library. 
1953. 

4. Baumal, W. An expected gain-confidence limit criterion 
for Dortfolio selection. Management Science 10:174=184. 
1963". 

5. Blau, G. Generalized polynomial programming: extensions 
and applications. Unpublished Ph.D. thesis. Stanford, 
California, Stanford University Library. 1968. 

6. Bracken, J. and G. McCormick. Selected application of 
nonlinear programming. New York, New York, Wiley and 
Sons, Inc. cl968. 

7. Byrne, R. Chance-constrained programming and related 
approaches to risk control in capital budgeting. NONR 
Rftport 760(94) Mr- 0^7-048 Pittsburgh, PczzcyIvczic, 

Carnegie-Mellon University Library. 1968. 

8. Byrne, R., A. Chames, W. Cooper, and K. Kortanek. A 
chance-constrained programming approach to capital 
budgeting with portfolio type payback constraints and 
horizon posture control. Journal of Financial and 
Quantitative Analysis 4:339-364. 1967. 

9. Carroll. C. The created response nurfaee technique for 
optimizing nonlinear restrained systems. Operations 
Research 9:169-184. 1961. 

10. Chames, A. and W. Cooper. Chance-constrained programs 
with normal deviates and linear decision rule. The 
Technological Institute. Evanston, Illinois, Northwestern 
University Library. 1959, 



www.manaraa.com

78 

11. Chames, A. and W. Cooper. Deterministic equivalent for 
optimizing and satisfactions under chance constraints. 
Operations Research 11:18-39. 1963. 

12. Chames, A., W. Cooper, and G. Symonds. Cost horizons 
and certainty equivalents: an approach to stochastic 
programming of heating oil. Management Science 4:235-263. 
1958. 

13. Chames, A., W. Cooper, and G. Thompson. Constrained 
generalized medians and hypermedians as deterministic 
equivalents for two-stage linear programming under 
uncertainty. Management Science 12:83-112. 1965. 

14. Chames, A., W. Cooper, and G. Thompson. Critical path 
analysis via chance-constrained and stochastic program­
ming. Operations Research 12:460-470. 1964. 

15. Chames, A. and M. Kirby. Optimal decision rules for the 
E-model of chance-con s trained programming. Cahiers du 
Centre d'Ebudes de Recherche Operationelle 1:5-44. 1966. 

16. Chames, A., M. Kirby, and W. Raike. Chance-cons trained 
generalized network. Operations Research 14:463-475. 
1966. 

17. Chames, A. and A. Stedry. Chance-constrained model for 
real-time control in research and development management. 
Management Science 8:353-362. 1966. 

18. Chames, A. and S. Thore. Planning for liquidity in 
mavlnea inan . Jo'-im"! cf Fizczcz 12. 
1966. 

19. Cheng, Pao-Lun. Optimum bond portfolio selection. 
Management Science 8:490-499. 1962. 

20. Dantzig, G. Linear programming under uncertainty. 
Management Science 1:197-206. 1955. 

21. Duffin. R. Cost minimization problemm treated by geo­
metric means. Operations Research 10:668-675, 1962. 

22. Duffin, R. Linearizing geometric programs. SIAM 
Review 12:211-217. 1970. 

23. Duffin, R., E. Peterson, and C. Zener. Geometric program­
ming: theory and application. New York, New York. 
Wiley and Sons, Inc. cl967. 



www.manaraa.com

79 

24. Elmaghraby, S. An approach to linear programming under 
uncertainty. Operations Research 7:208-216. 1959. 

25. Fama, E. Portfolio analysis in the stable paretian 
market. Management Science 11:404-419. 1965. 

26. Farrar, D. The investment decision under uncertainty. 
Englewood Cliffs, New Jersey, Prentice-Hall, Inc. 1962. 

27. Ferguson, A. and G. Dantzig. The allocation of aircraft 
to routes--an example of linear programming under uncer­
tain demands. Management Science 3:45-73. 1956. 

28. Fiecco, A. Sequential unconstrained minimization methods 
for nonlinear programming. Unpublished Ph.D. thesis. 
Evanston, Illinois, Northwestern University Library. 
1967. 

29. Fiacco, A. and G. McCormick. Nonlinear programming: 
sequential unconstrained minimization techniques. New 
York, New York, Wiley and Sons, Inc. cl968, 

30. Gordon, M. The payoff period and the rate of profit. 
Journal of Business 28:253=261. 1955. 

31. Hertz, D. Risk analysis in capital investment. Harvard 
Business Review 42:95-106. 1964. 

32. Hespos, R. and P. Strassmann. Stochastic decision tree 
for the analysis of investment decisions. Management 
Science 11:6249-8259. 1965. 

33. Heyman, M. and M. Avriel. On a decomposition for a 
special class of geometric prograiïttning problems. Opti­
mization Theory and Applications Journal 3:392-409. 1969. 

34. Hillier, F. Chance-constrained programming with 0 « 1 or 
bounded continuous decision variables. Management 
Science 14:34-57. 1963. 

35. Hillier. F. Dérivation of probabilistic information for 
the evaluation of risky investments. Management Science 
9:443-457. 1963. 

36. Hillier, F. The evaluation of risky interrelated invest­
ments. Amsterdam, Holland, North-Holland Publishing Co. 
C1969. 

37. Hillier, F. Supplement to; Derivation of probabilistic 
information for the évaluation of risky Inve^tmente, 
Management Science 11:485-487. 1965, 



www.manaraa.com

80 

38. Hofschmidt. M. Simulating the behavior of a multi-unit 
multi-purpose water resource aystan. In A. C. Hoggatt 
and F. E. Balderston (eds.) Symposium on simulation 
models. Chapter 6. Chicago, Illinois, South-Westem 
Publishing Co. cl963. 

39. Horowitz, I. The plant investment decision revisited. 
Journal of Industrial Engineering 17:416-422. 1966. 

40. Kirby, M. The current state of chance-constrained pro­
gramming. Princeton Symposium on Mathematical Programming. 
Princeton, New Jersey, Princeton University Press. 1971. 

41. Luce, R. and H. Raiffa. Games and decisions. New York, 
New York, Wiley and Sons, Inc. cl960, 

42. Lutz, F. and V. Lutz. The theory of investment of the 
firm. Princeton, New Jersey, Princeton University Press. 
1951. 

43. Madansky, A. Dual variables in two-stage linear program­
ming under uncertainty. Journal of Mathematic Analysis 
and Applications 6:98-108. 1963. 

44. Mangasarian, 0. Nonlinear programming. New York, New 
York, McGraw-Hill Book Co. cl969. 

45. Mao, J. and C. Samdal. A decision theory approach to 
portfolio selection. Management Science 12:8323-8333. 
1966. 

46: H. PcrtfcLic cclcctlor.; aZriclewL aivorsiri-
cation of investments. New York, New York, Wiley and 
Sons, Inc. 1959. 

47. Masse, P. Optimal investment decisions. Englewood 
Cliffs, New Jersey, Prentice-Hall, Inc. 1962. 

48. Miller, B. and H. Wagner. Chanc e-cons trained programming 
with Joint constraints. Operations Reeeerch 13:930-945. 
1965. 

49. Milnoi, J. Games against nature. In R. M. Thrall, 
C. H. Coombs, and R. L. Davis (eds.) Decision process. 
Chapter 4. New York, New York, Wiley and Sons, Inc. 
C1954. 

50. Moeseke, P. Stochastic linear programming. Unpublimh*d 
M.S. thesis. Ames, Iowa, Iowa State University Library. 
1960. 



www.manaraa.com

81 

51. Naslund, B. Mathematical programming under risk. The 
Swedish Journal of Economics 67:240-255. 1965. 

52. Naslund, B. A model of capital budgeting under risk. 
Journal of Business 39:257-271. 1966. 

53. Naslund, B. and A. Whins ton. A model of multi-period 
investment under uncertainty. Management Science 8: 
184-207. 1962. 

54. Olason, G. Computational aspects of geometric program­
ming. Unpublished Ph.D. thesis. Ames, Iowa, Iowa State 
University Library. 1971. 

55. Osborne, M. Brownian motion in the stock market. 
Operations Research 7:145-173. 1959. 

56. Passy, U. Generalization of geometric programming: 
partial control of linear inventory systems. Unpublished 
Ph.D. thesis. Stanford, California, Stanford University 
Library. 1966. 

57. Passy, U. end D. Wilde. Generalized polynomial optimi­
zation. Journal of Applied Mathematics 15:1345-1356. 
1967. 

58. PortI1lo-Campbe11, J. Decision under risk programming 
with economic application. Unpublished Ph.D. thesis. 
Ames, Iowa, Iowa State University Library. cl969. 

— - — V ' — y —-  I I I I  « .  ^  N - »  ^ V# w wMMt* leinsu^AS^ w & Wk 

chl-square deviates. To be published in Management 
Science ca, 1972. 

59B. Sengupta, J. A generalization of some distribution 
aspects of chance-constraint linear programming. 
International Economic Review 11:287-303. 1970 

60. Sengupta, J. On the sensitivity of optimal solutions 
ynder investment planning and programming, Atharitles 
8:1-23. 1965. 

61. Sengupta, J. and G. Tlntner. A review of stochastic 
programming. Review of the International Statistical 
Institute 39:197-223. 1971. 

62. Sengupta, J., G. Tlntner, end B. Morrison. Stochastic 
linear programming with application to economic models. 
EcGnoiniea 30:262-270, 1963, 



www.manaraa.com

82a 

63. Sharpe, W. A simplified model for portfolio analysis. 
Management Science 4:277-293. 1963. 

64. Strong, R. A note on sequential unconstrained minimiza­
tion technique for nonlinear programming. Management 
Science 12:142-144. 1965. 

65. Tintner, G. and J. Sengupta. Stochastic linear program­
ming and its application to economic planning. Essays in 
Honor of Oscar Lange. New York, New York, Pergamon Press. 
1965. 

66. Tintner, G., J. Sengupta, and V. Rau. An application of 
stochastic linear programming to development planning. 
Metroeconomica 14:25-41. 1962. 

67. Tobin, J. An aggregative dynamic model. Journal of 
Political Economics 63:103-115. 1955. 

68. Tobin, J. Liquidity preference as behavior towards risk. 
Review of Economics Statistics February:18-39. 1958. 

69. Wagner, H. On the distribution of solutions in linear 
programming problems. Journal of ';he American Statistical 
Association 53:161-163. 1958. 

70. Wagner, H. Principles of operations research with 
applications to managerial decisions. Englewood Cliffs, 
New Jersey, Prentice-Hall, Inc. cl969. 

71. Weingartner, H. Capital budgeting of interrelated 
-1 . ^ # 

72. Weingartner, H. Mathematical programming and the analysis 
of capital budgeting problems. Englewood Cliffs, New 
Jersey, Prentice-Hall, Inc. cl963. 

73. Wilde, D. and C. Beightlor. Foundations of optimization. 
Englewood Cliffs, New Jersey, Prentice-Hall, Inc. cl967. 

74. Wolfe, R. and L. Cutter. Experiments in linear prograiu-
ming. In R. L. Graves and P. Wolfe (eds.) Recent 
advances in mathematical programming. Chapter 2. New 
York, New York, McGraw-Hill Book Co. cl903. 

75. Zangwill, W. Nonlinear programming, a unified approach. 
Englewood Cliffs^ New Jersey, Prentice-Hall, Inc. cl969. 



www.manaraa.com

82b 

Zener, C. Minimization of aystom coat In terma of 
aub-syatem coat. National Academy of Sclencea ProceedIn&a 
51:162-164. 1964. 



www.manaraa.com

83 

ACKNOWLEDGMENTS 

The writer would like to dedicate this thesis to those 

"good people of the Graduate Office", whose timely counsel 

has aided generations of my fellow students over the hurdles 

of graduate study. 

A very special debt of gratitude is owed my wife, Joan, 

who has weathered the tides of a "husband in grad school", 

and, in addition to providing encouragement, has done an 

excellent job of editing and typing this manuscript. 

Thanks are also due to my colleagues of the Department of 

Industrial Engineering, in particular, Dr. Keith L. McRoberts 

and Dr. John Even. Also, 1 would like to acknowledge 

Professor J. K. Walkup and the College of Engineering for 

providing the financial support that facilitated my graduate 

work. 1 am indebted to Dr. Lee Fletcher and Dr. Herbert David, 

expected of a committee member. 

Finally, 1 would like to express my deepest gratitude 

to Dr. Jati K. Sengupta and Dr. Arthur C. Kleinschmidt, who 

I have had the honor of having as major professors. Both have 

offered continuous encouragement and assistance during the 

course of my graduate work. Dr. Sengupta has provided the 

stimulus and the direction to investigate areas heretofore 

unapproachable. The influence of Dr. Sengupta can be seen in 

the rosoarch loading to this dissertation. It has bam, A 



www.manaraa.com

84 

great honor to work with both Dr. Sengupta and Dr. Kletnschmldt; 

to the writer, it is an even greater honor to count them as my 

friends. 



www.manaraa.com

85 

APPENDIX 



www.manaraa.com

INPUT = 5 
OOTPUT = 6 

C GEOMETRIC PROGRAM 
C SOLVED BY USING LINEAR PROGRAMS 
C IMPUT DATA MUST BE A CONSISTENT LINEAR PROGRAM FORMED 
C BY CONVERTING A TIGHT MONOMIAL CONSTRAINED 3E0METRIC 

C PROGRAM. 
C INPUT DATA REQUIRED 
C FIRST CARD NUMBER OF L.P.CONSTRAINTS 
C SECOND CARD NUMBER OF L.P. COLUMNS 
C AN ARRAY OF SUBSCRIPTS OF EPSILONS ASSOCIATED WITH EACH COLUMN 
C AN ARRAY OF POINTERS TO ^AIRED EPSILONS 
C SUBROUTINE INTIAL READS IN THE LINEAR PROGRAM AND SOLVES FOR 
C A BASIC FEASIBLE SOLUTION AND THEN SAVES THIS FEASIBLE 
C SOLUTION FOR USE WITH LINEAR PROGRAM B 

CALL INTIAL 
ICQ FORMAT (' ',5D19.7) 

C COMPUTE SUM OF SQUARES 3F 2J -CJ 
CALL ZJCJ (XX) gg 
JJ = 0 

11 Z = EX (MIT,1) 
IF ( XX .LT. O.lD-10) XX = 0.1D-10 

1 YY = XX 
IPHASE = 1 
WRITE ( OUTPUT,21) JJ 

21 FORMAT { '1', • ITERATION NUMBER ',13) 
JJ = JJ + 1 
WRITE ( OUTPUT,20) EX (MIT,1) 

20 FORMAT (' 0* , ' COMPUTED VALUE OF TH3 OBJECTIVE FUNCTION = ',Dl9.7) 
J JJ = 1 

70 CONTINUE 
DO 2 2 I = 1,NT 
IF ( IBS (I) .NE. JJJ) GD TO 22 



www.manaraa.com

IF ( IT(-[) .LE. 0) GO TO 23 
IF ( IT (1.) .  LT. I) GO TO 22 

23 WRITS (OaTPaT, 10 1) JJJ, F (I) ,  J JJ, DS (I) 
JJJ = JJJ + 1 

22 CONTINUE 
IF ( JJJ .LE. KKK) GO TC 70 

101 FORMAT (" ','E(',I3, ') = • , D 1 9 . 7, 1 3 X, • DBLT =',D19.7) 

D016 I = 1,NT 
X=DEXP (EX(MIT,I)) 

16 WRITS (OUTPUT, 105) I, I , Er (MIT,I) ,X 
D O  2 0 0  1 = 1 ,  M T  
K = IIB (I) 
DE ( I) O.ODO 

200 CONTINUE 
DO 201 1=1, MT 
K = NT + I 
P = O.ODO 
DO 202 J = 1, MT 

202 P = P + EX (J,K) »DF(J) 
P= DSXP (P) 
WRITE ( OUTPUT, 20 3) 1,1 

203 FORMAT (" ', ' X (',I5,' ) = ',D19.5) 

201 CONTINUE 
105 FORMAT ( " ','Z(',I3,*) - C ( • , 13 , ' ) ' r D1 9-7 , • EX? '  , H 19 .  7) 

C FORM LINEAR PROGRAM B USING BASI: FEASIBLE SOLUTION OF A 
CALL FORIÎ 

C COMPOTE ZJ -CJ FO® LINEAR PROGRAM B 

CALL ZJ 
C SOLVE LINEAR PROGRAM B 

CALL LPP 
C CHECK IF LINEAR PROGRAf B IS UNBOUNDED,IF SO CALL BOUND 

IF ( ICHECK (1) .NF. 1) GO TO 2 
C COMPUTE FEASIBLE DIRECTION FOR C3AN3E OF SPSILONS 
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2 CALL DELTA 
6 CONTINDE 

C COMPOTE THE SDN DF SQUJ.PES OF ZJ -:J 

CALL ZJCJ (XX) 
C IF THE NEW SUM OF SQOAIIES IS NOT LOWER THAN PREVIOUS 
C DIVIDE THE CHANGE IN EPSILON BY TWO 

IF ( XX.LT. YY) GO TO U 
IF ( IPHASE -NE. 2) GO TO 10 
DO « 0 I = 1, N 

40 E (I) = 3(1) + DE (I) 
CALL ZJCJ (XX) 
GO TO aa 

C THRO ... 3 DIVIDES DELTA E BY TWO 
10 CONTINUE 

DO 3 I = 1,N 
DE (I) = DE (I) / 2.0D0 

3 E(I) = E(I) - DE (I) 

GO TO 6 OP 
C CHECK FOR TERMINAL CONDITTON 00 

U IPHASE = 2 
YY = XX 
GO TO 10 

UU IF { XX ,.GT. 0.1D-10) GC TO 1 
IF ( Z .LT. EX(31T,1)) CO TO 11 
IF ( Z .GT. EX(M1^,1)) CO TO 10 

1300 STOP 
END 
SDBROOTIWE LPP . 
IMPLICIT SEAL*8 (A-H,0-2) 
DIMENSION A (20 ,U0) , IB (UC ) , IBT (UO) 
DIMENSION E (40), DE (40) ,135 (HO) ,IT(UO) ' 
DIMENSION ICHSCK (UO) 
DIMENSION C(UO),CB(UO) 



www.manaraa.com

DIMENSION UPPER ( 40) , I 1 ARK (U0) 
INTEGER OUTPUT 
COMMON /h^/ INPUT,OUTPUT 
COMMON /A2/ A,IBT,IB 
COMMON /A4/ E,DE,IBS,IT 
COMMON /A5/ C, CB,XXXX, Ii:OL 
COMMON /A6/ ICHECK 
COMMON /A7/ N, M, Ml ,MN,K:<'fr 
COMMON /A8/ NT,MT,MIT,MIT 

C SUBROUTINE LP IS A STAND&B) SIMPLEX METHOF OF SOLVING L.P.'S 
C THRU ... 60 INITIALIZES UNBOUNDED CHECK 

DO 300 I = 1,N 
UPPER (I) ^ O.ODO 

300 IMARK (I) = 0 
DO 200 JJJ = 1,KKK 
DO 200 I = 1,NT 
IF ( IBS (I) .NE. JJJ) GO TO 200 
IF ( IT(I) .  EQ. 0) GO TO 201 
IF { IT (I) .  LT. 0) GO TO 202 \0 
IF ( IT (I) .LT. I) GO TO 200 
UPPER (JJJ+1) = ( 1. ODO - E{I))*.95D0 
UPPER (JJJ + KKK + 1 ) =: .  95D0* E(I) 
GO TO 200 

201 UPPER ( JJJ + 1) = 10000.DO 
GO TO 204 

202 UPPER (JJJ + 1) = 1.0D0 - E(T) 
20y UPPER ( JJJ + KKK + 1 )  = .95D0* E(I) 

200 CONTINUE 
65 DO 60 I = 1 ,N 
60 ICHECK (I) = 0 

C SELECTS COLUMN TO ENTER BASTS 
70 IJ= 0 

X =-U.1D-10 
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THRU 5 1 F INDS HOST NEGATIVE A (J) -
DO 51 1= 2,N 
Z = A (Ml,I) 
IF ( IMAPK (I) .NE. 0) 2, =  - Z 
IF ( Z .GE. X) CO TO 51 
IF ( ICHECK (I).EQ.I ) CO TO 51 
L=I-KKK 
IF (L .  LT. 2) L=I+KKK 
IF (IHAFK (L) .NE.O) GO TO 51 
IJ = I 
X = Z 

51 CONTINUE 
IF (IJ .EQ. 0) GO TO 1(0 
JJ = IJ 
K = 0 
ITHETA = 3 
;c =  UPPER (IJ) 
Y = X 

00 5 01 I = 1,H 
IF ( A{I,.IJ) .IT. 0.1D-'0) GO TO 501 
Y = A (1,1) /A (I,IJ) 
IF ( X.LE. Y) GO TO 501 
ITHETA = 1 
X = Y 
K = I 

01 CONTINUE 
DO 502 I = 1,H 
IF ( A(IrlJ) .  GT.-O. 1D-10) GO TO 502 
IF ( IB (I) .  GT. N) GO 10 502 
Y =- (OPPER (IB(I) ) - A (I, 1) ) /» (I,IJ) 
IF ( X. LE. Y) GO TO 502 
ITHETA = 2 
X = Y 

(J) 
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100 FORMAT (' »,'THE SDBSCRXPTS OF EPSILON FOR EACH COLUMN APE') 
DO 12 I = 1,N 

12 WRITE ( OUTPUT,101) I,IDS(I) 
101 FORMAT (' •,«SUBSCRIPT :',IW,') = ',!%) 

WRITE (07TFUr,102) 
102 FORMAT {' 'POINTERS FOR EPSILON') 

DO 13 I = 1,N 
13 WRITE (OUTPUT, 103) I,IT|I) 

103 FORMAT {' »,'POINTER (',14,' ) = ',!%) 

C SUBROUTINE L? SOLVES THE LINEAR PROGRAM 
CALL LP 

C THRU 11 SAVES THE BASIC FEASIBLE SOLUPION F3 LINEAR P9D39A1 k 
C IIBT (J) CONTAINS POINTER TO ROW IF BASIC 
C ZERO IF NON BASIC 
C IIB (I) CONTAINS POINTER TO BASIC COLUMN 
C THE REMAINDER SAVES PARAMETERS FOR LINEAR PROGRAM A 
C INITIALIZES PARAMETER FOR LINEAR P?OGR.\M B 
C L.P. A L. P. B 
C N NT NOHBEP OF COLUMNS 
C M MT NUMBER OF VARIABLES 
C M1 HIT INDEX OF ROW OF Z(J) -C(J) 
C MN MNT COLUMN SIZE WITH ARTIFICAL VA3IAL5LES 

DO 10 J =: 1 ,M 

IIB (J) = IB(J) 
DO 10 I = 1, MN 

10 EX (J,I) = A (J,I) 
DO 11 I = 1,MN 

11 IIBT (I) = lET(I) 
MT = M 
NT = N 
HIT = Ml 
MNT = MN 
M = N - 1 - M 
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C ICOL rs THE COLUMN OF NORMAL C VALUE USED IN NOPNALIZA^ION 
C IVAR IS VARIABLE USED TO NORMALIZE L. P. '  S C02FFICIFXTS T3 3%5 

READ ( INPUT,7) IVAR,ICOL 
•C THRU 3 NORMALIZE CONSTRAINT COSTS TO ONE 

XXXX = DLOG { A (IVAR,I(:OL) ) 
DO 8 I = 2,N 

8 A ( IVAR,,I) = DLOG { A (JiVAP, I) )/XXXX 
KKK = 0 

C THRU 9 INTIALIZES ALL PAIRED EPSILON TO 3.5 
C INITIALIZES ALL OTHERS TO ONE 
C KKK IS TOTAL b UMBER OF EPSILONS USED 

DO 9 I = 1,N 
K = IBS (I) 

IF ( KKK .  LT. K) KKK = K 
IF ( K .EQ. 0) GO TO 9 
E (I) = 0.5D0 
IF ( IT (I) .LE. 0) E (I) = 1.0D0 

9 CONTINUE 
C SUBROUTINE COST COMPUTES COST COEFFICIENTS DEPENDENT ON 

CALL COST 
C SUBROUTINE ZJ CALCULATES Z AND Z (J) - = (J) FOR LINEAR PFOGFQ^I A 

CALL ZJ 
WRITE ( OUTPUT,10%) 

104 FORMAT (• •,• NORMALIZED INPUT MATRIX') 
DO 14 I = 1,M1 
WRITE (OUTPUT, 105) I,(A(I,J),J= 1 ,  MN) 

105 FORMAT (• •,•POH NUX2ER OF LINEAR PROGRAM ',I10,20(/5D19.7)> 
WRITS ( OUTPUT ,106) (19 [I),I =1,M) 

106 FORMAT (' 'BASIC COLUXNf; APE',1515) 
DO 15 I = 1,N 

15 WRITE (OUTPUT, 107) I, C (] ) 
107 FORMAT (' '  , • COST COEFFICIENT (',!%,') =',D19.7) 

WRITE ( OUTPUT ,100) 
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READ (INPUT,7) (IBS (I),I = 1 ,  N) 
C ZERO IF EPSILON (I) IS RESTRIZCED TO .31. 3 

' C -1 IF EPSILON (I) IS RESTRICTED TD .LE. 1 
READ ( INPDT,7) (IT (I),I ^ 1 , N) 

C H + N = SIZE OF LINEAR PROGRAM A WITH ARTIFICAL VARIABLES ADDED 
MN = M + N 
L = N + 1 

C THRO 2 INTIALIZES ARIAY TO ZERO 
DO 1 I = L,MN 
IBS (I) = 0 

1 IT (I) = 0 
HI = M + 1 
DO 2 I = 1,MN 
IBT (I) = 0 
E < I) = O.ODO 
DE (I) = O.ODO 

2 C (I) = O.ODO 
C THRO ... 3 INTIAIIZFS ARTIFIAL VARIABLES AND THEIR COST FUN'^TIONS 

DO 3 I = 1,Ml w 
IB (I) = L 

IBT (L) :: I  
CB (I) = - 1000.ODO 
C (L) = - 1000.ODO 
DO t* J  = 1 ,  MN 

a A (  I,J) = O.ODO 
A {I,L) = t.ODO 

3 L = L + T 

C THRU ... 5 READ IN LINEAR PROGRAM A ARRAY 
C EACH COLUMN CORPSSPONS TO \ GEOMETRIC PROGRAM 
C MONOMIAL CONSTRAINT 
C EACH ROW CORRESPONDS TO A PRIMAL VARIABLE 

DO 5 I = 1,M 
5 READ ( INPUT,6) ( A (I,J),J = 1 ,  N) 
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DO 531 I = 1,M 
531 A (1,1) = A (1,1) + A( [,IJ)* UPPER (I J) 

GO TO 65 
100 CONTINUE 

L = H -s- 1 
DO 600 J = 1,N 
IF ( IBT (J) .NE. 0) GO TO 600 
IF ( laAPK (J) .  E]. 0) GO TO 600 
A (L, 1) = UPPER (J) 
IBT (J) = L 
L = L + 1 

600 CONTINUE 
RETURN 
END 
SUBROUTINE INTIAL 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION E (UO) ,DE fUO) ,IPS (U0) ,IT (UO) 
DIMENSION EX (20,40) , IIB (liO) ,IIBT (40) 
DIMENSION C (UO) ,CB (UO) 
DIMENSION A (20,40) ,IB(40) , IBT (40) 
INTEGER OUTPUT 
COMMON /A1/ INPUT,OUTPUT 
COMMON /A2/ A,IBT,IB 
COMMON /A3/ EX,IIBT,IIB 
COMMON /A4/ E,DE,IBS,IT 
COMMON /A5/ C,CB,XXXX,ICOL 
COMMON /A7/ N,M,M1,Mj,FKK 
COMMON /AS/ NT ,MT,MIT,HNT 

C N EQUALS NUMBER OF MONOMIAL CONSTPATNTS 
READ (INPUT,7) M 

C M EQUALS NUMBER OF CONVERTED PRIMAL CONSTRAINTS 

READ ( INPUT,7) N 
C IBS (I) CONTAINS SUBSCRIPT OF EPSILON ASSOSIATED WITH MONOMIAL 
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K = I 

502 CONTINUE 
IF ( IMAEK (IJ) .  NF. 0) GO TO 510 
IF ( ITHETA .NE. 1) GO TO 505 

CALL BASTS ( IJ,K) 
GO TO 6 5 

505 IF I ITHETA .NE. 2) GO TC 506 
IJJ ^ IE (K) 
CALL BASIS (IJ,K) 
IJ = IJJ 
IMAPK ( IJ) 1 
DO 507 I = 1,M 

507 A (1,1) = A (1,1) - U!>?ER (IJ) * A(r,IJ) 

GO TO 65 
506 IMARK (IJ) = 1 

DO 508 I = 1,M 
508 A (1,1) = A (1,1) - UPPER (IJ) * A (1,1 J) 

GO TO 6 5 
510 IF ( ITHETA .NE- 1) GO TO 520 

CALL BASIS (IJ/K) 
A (K, 1) = A(K,i) + TTP-'SP (IJ) 
IMARK (IJ) = J 
GO TO 65 

520 IF ( ITHETA .NE. 2) GO TO 530 
L = IB (K) 
CALL BASTS (IJ,K) 

IMARK (IJ' = 0 
IMARK C) = 1 

A(K,1) :r A (K,1) + UPPER (IJ) 
DO 521 V ^ 1,M 

521 A (I, r  - A (I, 1) 
GO TO 6 5 

530 IMAPK (IJ) = 0 
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CHECKS FOR PAIR CHANGE 
IF ( IT (J) .  GT. 0) DE (IT (J)) = - DE (J) 

U CONTINnS 
THRO ... '3 C HECKS FOR VIOLATED CONSTRAINTS ON EPSILON 

IT (I) POSITIVE IF PAIR MOST EQUAL DNE 
ZERO IF ONLY POSITIVE RESTRICTION 
NEGATIVE IF O.LE. 1 

DO 5 I = 1,NT 
IF ( E(I) .LT. 0.1 D-6) GO TO 5 
X = E(I) + DE (I) 
IF ( X .GT. 1.ODO) GO TO 6 
IF ( X .GT. O.ODO) GO TO 5 
X = - Ed) * .95D0/DE(I) 

GO TO 7 
6 IF ( IT (I) .EQ. 0^ GO TO 5 

X = (1.0D0 - E(I)) * .9500/ DE (I) 
7 DO 8 J = 2,N 
9 DE(J) = DE(J) * X 
5 CONTINUE 

COMPUTE NEW SET OF EPSILONS 
DO 9 I = 1,NT 

9 E(I) = Ei[I) + DE (I) 

RETURN 
END 
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IF ( DABS (A(M1,I)) .LE. 1.0D-10 ) A (Ml,I) = 3.3D0 
505 CONTINUE 

A(II,JJ) = 1.0D0 

100 RETURN 
END 
SUBROUTINE DELTA 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION A (20,40) , 13 ( ftO) ,  IBT (U 0) 
DIMENSION E (UO) , DE (UO) ,I9S (UO) ,IT (40) 
INTEGER OUTPUT 
COMMON /&!/ INPUT,OUTPUT 
COMMON /12/ A,IBT, IB 
COMMON /&%/ E,DE,IPS,IT 
COMMON /as/ NT,MT,MlT,MNP 
COMMON /A7/ N,M,Ml,MN,KKK 

C SUBROUTINE EELTA EXTRACTS A FEASIBLE DIRECTION FDR CHAN35 0? 
C EPSILON 
C THRU ... 3 ZEROES CHANGE 

DO 1 I = 1,NT ^  
1 DE (I) = O.ODO 

C THRU ... U SEARCHES FOR BASIC VARIABLE OF DEL^A E 
DO a L = 1,KKK 

C THRU ... 3 FINDS SUBSCRIPT OF DELTA EPSILON 
DO 3 I = 2,NT 
IF ( IBS (I) .  NE. L ) GO TO 3 
J= I 

GO TO 2 
3 CONTINUE 
2 JJ = L + 1 

C CHECKS OF POSITIVE CHANGE 
IF ( IBT (JJ) .NE. 0) D3(J) = A (IBT(JJ),1) 

C CHECKS FOR NEGATIVE 
IF ( IBT (JJ + KKK) .NE. 0) DE (J| = - A ( IB T (J J+K K K ) , 1 ) 
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DO 52 T = 1 ,  M 
IF (A (I,JJ) .LE. 0. 1D-7) GO TO 52 
IF (X .EQ.-1.0D0 ) X = it ( 1,1) / A (I,JJ) 
IF (X .LT,, (A (1,1) / A (:;,JJ))) 30 TO 52 
X = A (1,1) / A (I, JJ) 
II = I 

52 CONTINUE 
C RETURN IF COLUMN JJ CANNOT BE ADDED TD BASIS 

IF (II.EQ. 0 ) GO TO 100 
53 CONTINUE 

C CHANGE OF BASIS 
C MARKS CHANGES IN POINTERS 

I = IB (II) 
IBT(I) =0 
TBT (JJ ) = II 
IS (II) = JJ 
CE (II) = C(JJ) 

C CALCULATE NEW TABLEAU 
C THRU ... 31 COMPUTES NEW 9CHS EXCEPT PIVOT ?3W *  

DO 31 1= 1,M1 
IF (I.EQ. II) GO TO 31 
X = A (I,JJ) / A (II,JJ) 
DO 3 2 1,MN 

32 A (I, J) = ?. ( I,J) - A(II,J) * X 
31 CONTINUE 

X = A (II, J J) 
C THRU ... 35 COMPUTES NEW PIVOT ROW 

DO 35 J= 1,MN 
35 A (II, J) = A (II, J) / X 

DO UO I = 1,Ml 
no A(I,JJ) = O.ODO 

C THRU ... 505 CLEAN -UP PROCEDURE 
DO 505 I = 1 ,N 
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107 FORMAT (• ','COST COEFFICIENT =»,D19.7) 

RETURN 
END 
SUBROUTINE ZJ 
IMPLICIT REAL»8 (A-H,0-Z) 
DIMENSION C(U0),C3(40) 
DIMENSION A(20,U0) ,IB(U0) ,IBT(40) 

INTEGER OUTPUT 
COMMON /fli/ INPUT,OUTPUT 
COMMON /A2/ A,IBT,TB 
COMMON /A5/ C,CB,XXXX,ICDL 
COMMON /A7/ N,M, M1,MN,KKS 

C SUBROUTINE ZJ COMPUTES Z(J) - C(J) SEVEN COST COEFFICIENTS OF LINES3 
C PROGRAM 

DO 55 J= 1,N 
& (Ml , J) = - C (J) 
DO 55 1= 1,M 

55 A (Ml,J) = A (Ml,J) + CB(I)» A (I,J) ^  
RETURN to 
END 
SUBROUTINE BASIS (JJ,TI) 
IMPLICIT REAL*8 (A-H,0-Z. 
DIMENSION A (20,40) ,IE(40i ,IBT(U0) 
DIMENSION C(%0),CB(%0) 
INTEGER OUTPUT 
COMMON /A1/ INPUT,OUTPUT 
COMMON /A2/ A,IBT,IB 
COMMON /A5/ C, CB,XXXX,IC:)L 
COMMON /A?/ N,M,Ml,MN,KKC 

C SUBROUTINE BASIS IS STANDARD SIMPLEX TABLEAU CHANGE 
IF ( II.NE. 0) GO TO 53 
X =-1.0D0 

C THRU ... 52 ?INDS PIVOT ROW 
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K = 0 
C SUBROUTINE SASIS TRIES TO ;\DD JJ C0L3MN TO BASIS 

CALL BASIS ( JJ,X) 
IF (K.NE. 0) GO TO 65 

C YES CONTINUE ON 
C NO MARK AS UNBOUNDED AM TP" OTHERS 

ICHECK (JJ) = 1 
ICHECK (1) = 1 
GO TO 70 

100 CONTINUE 
DC 200 1=1,M 
J = I 

IF (IB(I).LE.N) GO TO iîOO 
DO 2U0 111=2,N 
K = III 
IF (IBT (III) .  NE. 0) GO TO 240 
IF (A(J,K).LE. 0.1 D-6) GO TO 2U0 
X= A (J, 1)/A (J, K) - 0.1D--6 g  
DO 2 50 11=1,M O 
IF (A (II,K).LE. 0. 1D-6) GO TO 250 
IF ( A (11,1) /A (II,K) -LT.X) GO TO 2U0 

250 CONTINUE 
CALL BASIS ( A , J) 
GO TO 100 

2a0 CONTINUE 
200 CONTINUE 

DO 1U I = 1,f1 
14 HRITF (OUTPUT, 105) I,(A(I,J),J= 1,MN) 

105 FORMAT (' ','POW NUMBER OF LINEAR PROGRAM ',110,2^(/5ni9.7)) 
WRITE ( OUTPUT ,106) (113(1),I =1,%) 

106 FOP*AT(' »,«BASIC COLUSMS ARE',1515) 
DO 15 I = 1,N 

15 fc-piTF (OUTPUT, 107) I, C ;i) 
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KK = KK -> 1 
C (KK) = C(KK) -EX (I, 1) I DE (IIB (I) ) 
C(KK + KKK) = - C(KK) 

10 CONTINUE 
RETURN 
END 
SOBPODTI!IE LP 
IMPLICIT BE&L*8 (A-H,0-2) 
DIMENSION a (20,40) ,IB (UC) ,IBT{aO) 
DIMENSION C(40),C3(40) 
DIMENSION ICHECK (40) 
INTEGER OUTPUT 
COMMON /M/ INPDT, OUTPUT 
COMMON /h2/ A,IBT,T3 
COMMON /I\5/ C, CB,XXXX,ICOL 
COMMON / l \ 6 /  ICHECK 
COMMON /h7/ N,M,Ml,My,KKK 

C SU3P0UTINE LP IS A STANDAR: SIMPLEX MSTHOE OF SOLVING L.P.'S g  
C THPU 60 INITIALIZES CNBOUNDED CHECK ?  

65 DO 60 I = 1 ,N 
60 ICHECK (I) = 0 

C SELECTS COLUMN TO ENTER "ASIS 
70 IJ= 0 

X =-0.1D-10 
C THFO 51 FINDS MOST NEGATIVE Z (J( - C (J) 

DO 51 1= 2,N 
IF ( A (Ml ,1) .  GE. X) GO TO 51 
IF ( ICHECK (I).EO.I ) GO TO 51 
IJ = I 
X = A (Ml,I) 

51 CONTINUE 
IF (IJ .EQ. 0) GO TO 100 
JJ = IJ 
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K = K + 1 
â (K,1) = -EX (MIT,J) 
KK = IBS (J) 
IF ( KK.NE. 0 ) A (K,KK>- 1 ) = B(K,KK+ 1) - DE (J) 
DO 5 I = 1,MT 
KK = IBS (IIB (I) ) 
IF { KK.NE. 0) A(K,KK+1) = A(K,KK+1) + E X ( T , JI •D E ( 11B ( I) ) 

5 CONTINUE 
4 CONTINUE 

C THRU 6 ADDS COLUMNS TO INSURE POSITIVE DELTA ETSTLONS 
DO 6 I = 1,KK? 
KK = T + KKK + 1 
DO 6 J = 1,3 

'5 a  (J, KK) = - A (J,I + 1) 
C THRU 7 FORCE ISTIAL SOLUTION TD BE BASI: FEASIBLE 

DO 7 I = 1,M 
IF ( A (1,1) .GT. O.ODO) SO TO 7 
DO 8 J = 1 ,  N g  

8 A (I, J) = -A (I, J) M 
7 CONTINUE 

J = N 
C THRU ... 9 ADDS LARGE NEGATIVE COST COEFFICIENTS TT INITIAL SDLUTI 

DO 9 I = 1. .1 
J = J + 1 
CB (I ) = - 10000.ODO 
C (J) = -10000.ODO 
IBT (J) = I 

9 IB (I) = J 
C THRU ... 10 USE L.P. AS OBJECTIVE FUNC'^^'ON COST PARTIAL? 
C FOR FORCING OHJECTIVE FUNCTION FIR L.P. P 

DO 10 I = 1,MT 
KK = IBS (IIB (I)) 
IF (KK. EO. 0) GO TO 10 
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DIMENSION A (20,40) ,IB (UO) ,IBT (UO) 

DIMENSION E (40) , DE (40) ,:[BS (40) ,IT(40) 
DIMENSION EX (2 0,40) , ITB (4 0) , IIBT (4 0) 

INTEGER OUTPUT 
COMMON /A1/ INPUT,OUTPUT 
COMMON /A2/ A,IBT,IB 
COMMON /A3/ EX,IIBT,II? 
COMMON /A4/ E,DE,IBS,IT 
COMMON /A5/ C,CB,XXXX,irOL 
COMMON /A7/ N,M,Ml,HN,KKK 
COMMON /A8/ NT,MT,MlT,HNr 

C SUBROUTINE FORM SETS UP LI:IEAP P90G9AM TO COMPUTE DELTA EPSILON 
C THRU ... 2 INITIALIZES REPAYS 

DO 1 I = 1,H 
CB (I) = O.ODO 

1 IB (I) ^ 0 
DO 2 J = 1,MN 
IBT (J) = G g  
C (J) = O.ODO w 
DO 2 I = 1,M 1 

2 A ( I, J) = O.ODO 
C THFU ...3 COMPUTE THE PARTIAL DE^IVATIVE OF C(J) 

DO 3 1= 2,NT 
KK = IBS (I) 
IF ( KK.EQ. 0 ) GO TO 3 
DE (I) = - 1.0D0/E (I) 
IF ( IT (I) .LE. 0 ) GC TO 3 
IF ( IT (I) .LT. I) DE (I) = - DE (I) 

3 CONTINUE 
K = 0 

C THRU ... U SETS UP KKK COLUMNS OF L. P. B ONE FOR "ÎACH EPSILON 
DO 4 J = 2,NT 
IF ( IIBT (J) .NE. 0) GO TO 4 
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DO a J = 2,NT 
U XX = XX + EX (H IT, J) *SX (HIT, J) 

WRITE ( OUTPUT ,5) XX 
5 FORMAT (' ','THE SUM 07 SQUARES OF ZJ -?J =',D19.9) 

RETURN 
END 
SUBROUTINE COST 

C SUBROUTINE COST USED THE EPSILONS TO CALCULATE COST COEFFICENTS 
C EPSILON AND TNTIALIZES THE BASIC COST VECTOR 

IMPLICIT REAL*R (A-H,0-Z) 
DIMENSION A (20 ,40) ,IB (40) , IBT (40) 
DIMENSION E(a0),DE{U0) , IB S ( U 0) , IT ( îi 0 ) 
DIMENSION C(40),CB(a0) 
INTEGER OUTPUT 
COMMON /A1/ T NPHT, nnTPlIT 
COMMON /A 2/ A, If'?, in 
COMMON /AU/ E ,  , I • S  ,  I" 
COMMON /À5/ C,(:( - YY T , \:0L g 
COMMON /A7/ N',M, "N, ?  
COMMON /AS/ Sr, , 
DO 1 I = 1,N 
C (I) = O.ODJ 
IF ( IBS (I) . !:/. C-) T O  1  
C (I) = -DL3S (-(T)) 

1 CONTINUE 
DO 2 I = 1 - M 

2 CB (I) = C ( IB (I)) 
C (IC0L1 = -XXXX 

RETURN 
END 
SUBROUTINE FORM 
IMPLICIT REAL*8 (A-H,0--Z) 
DIMENSION C(40 } .  (UO) 
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Ml = S + 1 
N  ^  K K K *  2  +  1  
MN = N 

HETUHN 
END 
SOBRODTINE ZJCJ (XX) 

C SUBRODTINE ZJCJ (XX) CALCULATES COST COEFFICIENTS DEPENDENT 
C ON EPSILON 
C OSES THE COST COEFFICIENTS TO COMPOTE Z(J) -C(J) 
C COMPUTES THE SIM OF SQUARES OF Z {J) -C{J) 

IMPLICIT HEM»8 (A-H,0-%) 
DIMENSION C (UO) ,, C B (UO) 
DIMENSION E(UO) „DE (UC) , IBS (40) ,IT(40) 
INTEGER OOTPDT 
DIMENSION EX(2 0,, UO) ,113 (UO) ,IIBT('4 0) 

COMMON /A1/ INPUT,OUIPJT 
COMMON /A3/ FX/IIBT,1I3 
COMMON /AU/ E,TE,IBS,IT g  
COMMON /A5/ C,CB,XTXX , ECOL V, 
COMMON /aa/ NT,MT,Mil,INT 
DO 1 I = 1,NT 
C (I) = O.ODO 
IF ( IBS (I) .  EQ. 0) G) TO 1 
C(I} = - DLO& (E (I) ) 

1 CONTINUE 
C (ICOL) = -XXXX 
DO 2 I = 1,MT 

2 CB (I) = C (IIB(I) ) 
DO 3 J = 1,NT 
EX (MIT,J) = -C(J) 
DO 3 I = 1,MT 

3 EX (M IT, J) = FX (MIT.,J + C3(I)*EX(I,J) 
XX = 0.3D0 


	1972
	Capital investment planning: an application of stochastic nonlinear programming
	Edwin Lee Hullander
	Recommended Citation


	tmp.1412711728.pdf.BdQwr

