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INTRODUCTION

The planning of capital investments should consider three
factors: (1) the proper timing of cash flows, (2) the inter-
relationship between projects, and (3) the risk associated with
committing capital funds. Traditionally, capital budgeting
consisted of finding a rate of return or present worth for each
project ranking them and selecting only those that fall within
the acceptable rate of return or budget constraints., The pro-
cedure avoided the effects of intérrelationship of projects by
forcing the assumption of independence., Therefore, those
interdep=ndent projects were grouped as one large project.
Secondly, the risk associated with an investment was treated
in the context of the investor's utility functioen, Finally,
capital budgeting has been static in nature, planning for
capital expenditures one year at a time. The primary restric-
tion of the development of new and more comprehensive
techniques was the limitation of computation. The character-
igtics of investment planning models are generally complex
nonlinear functions.

With the advent of large-scale computer systems, the
cemputaticonal reosericticons hiave been relieved. Thne develope-
ment of new methodg to analyze risky interrelated investments
was pioneered by Hillier, who employs chance-constrained
programming for the analysis of risk, However, one of the

problems of chance-constrained programming is the assumption



that the random variable is normally distributed. This is not
always the case in models of capital investments.

This study will be concerned with the development of a
chance-constrained model that employs a nonnegative (chi-
square) distributional assumption. The computational difficul-
ties usually associated with this approach will be handled by
geometric programming,

The study will review the ¢urrent literature on capital
investment planning and the techniques used for analysis. A
chance-constrained programming model, using the chi-square
assunption, is then developed and illustrated in two problems
of investment planning. The first, a portfolio model, is
formulated and its solutions compared with previous solutions
using other assumptions and procedures. Next a capital
budgeting problem is developed to anslyze both the risk of
actual losses as well as opportunity loss. The study is con-
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REVIEW OF LITERATURE

The evaluation of risk asscciated with an investment
project is a very important consideration in capital budgeting.
This 18 especially true when the impact of failure could sig-
nificantly change the financial position of the organization.
While the independence of investments can be achieved by
diversification in portfolio investments, it is much more
difficult to guard against failure in capital budgeting. The
desirability of one investment project is often interralated
with the performance of other investment projects., This inter-
relationship may be of a competitive nature, where the
introduction of a new product would compete with existing
products in the same market. On the other hand, they may be
complementary, where as a new product may share cormon facili-
ties or technology, thereby sharing the cost. The revenues
resulting from each of the investment projects must be
correlated because their incomes are affected by the common
factors. Those factors could be internal such as shared
facilities or external such as the general state of the
economy. The interrelationship between investmant projects
directly affects the total
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Therefore, any capital investment decislons shnouid give con-

sideration to the interrelationship of projects and their

subsequent risk,



The general framework for current analysis of risky
investments was developed by Lutz and Lutz (42) and later
synthesized by Farrar (26) for testing particular investment
models as well as providing a rigorous survey of the work done
up to that time,

Markowitz (46) treated a special case of interrelated
risky investments in his analysis of portfolios containing a
large number of securities. The portfolio model was formu-
lated as a static model that assumed a deterministic equivalent
of a risky or uncertain model, Markowitz illustrated how to
determine the portfolio configuration that provided the most
suitable combination of rate of return and standard deviation
of rate of return., His work subsequently motivated the work
of Cheng (19), Sharpe (63), Baumal (4), Fama (25), and Mao and
Sarndal (45). Extension of the portfolio idea was developed
by Naslund and Whinston (53) based on the risk programming
concept OI Cnarmes and¢ Cooper {(1C).

Weingartner's (72) treatment of the capital budgeting
medel, under certalinty conditions but in a capital rationing
and imperfect capital market, provided the foundation of later
work by Naslund (51), Byrne (8), and others. Weingartner's
(71) survey of papers on evaluation of interrelated investments
provides a good cross section of current developments,

The concept of incorporating the interrelationship of
inveatmant opportunitics with the cubscguent Tisk invoived was

put forth by Hilllier (36) in which he formulated an investment



model that would generate one or more mutually independent
series of cash flows that were assumed to be normally distrib-
uted. The cash flow within each series was assumed to be
either mutually independent or perfectly correlated. The work
was extended to the development of the probability distribu-
tion of the present value and suggestions for how it might be
utilized in a decision process. This approach was carried on
by Hertz (31), Hillier (37), Horowitz (39), and Hespos and
Strassmann {32).

The two primary characteristics of capital investment
planning, according to Hillier (36), are the interrelationship
of investment proposals and their subsequent risk., The fol-
lowing discussion of these two areas will provide a foundation

for the models to be developed in later sections,

Consideration of Interrelationship of Investments

Consider the case where a number of capital investment
proposals are presented to management for consideration. The
decisions made will most likely affect the long-term growth of
the organization; therefore, a good deal of thought goes into
the planning of capital investments. The criterion for project
selection must De one that incorporates the effects of uncer=-
tainty or risk, the goals and obJjectives of the organization,
and the interrelationship of the investment proposals,

The decision to accept or reject a project at a given

time is more of a "go or no=-go" type of decision in ecapitral



budgeting; whereas, the decision in portfolio selection is
"how much" or what percentage of the portfolio should be of a
certain type of stock. The former decision rule should not be
viewed as restrictive since projects can be postponed and
decomposed into phases (pilot plant, product plant, and etc.)
where the latter is dependent upon the former. Also, alterna-
tive strategies could be formulated, such as, start a new
product in a number of different configurations. Then if
losses drop below a given level, drop the losers and gear up

for the others.

Now consider an investment decision x13 to be of the form
1, 1f the ith investment is accepted at time J
0, 1f the 1~ investment is rejected at time J
where the number of investment projects are i = 1,2,...,1 and
the decision periods are j = 1,2,...,J or the planning horizon.
For those combinations of investments that are mutually exclu-
sive either by design or by chance, the sonstraint on the

decision variables can be expressed as

L% < 1, for all i € k., (2.1)

On the other hand, if one investment project is contingent
belng approved, then the constraint is

PR L PRY (2.2)
where the decision at Xy o1 Must be affirmative before the

latter decision X, 4 can be considered. By imposing this type

of sida condition, invostmont planming can be linked tegethor



in a sequential decision process. Hillier (36) has discussed
the use of dynamic programming for planning investment programs
based on this type of decomposition.

The primary purpose of adding the decision structure to
investment planning models is to evaluate the subsequent cash
flow that is generated. Assume that the immediatsc cash flow
starts at some period j and is evaluated at the end of each
subsequent period. The number of periods that the cash flow
is evaluated (k = 0,1,2,,..) from the time of investment to
the present is the total net cash flow xk(x) (rotal positive
inflows minus total negative outflows). Thus, we can think of
the net cash flow xk(x) as the result of a sequence of deci-
sions concerning a project i or set of projects that occurred
at various times (j = 1,2,...). The decision at each point in
time initiated a cash flow stream which occurred over k inter-
vals of times (say years). The net value of the cash flows is
evaluated at the present as

X, (x) = £.X, (x), ke 1,2,....K, (2.3)

Hillier points out two important facts about the net cash
flow., First, that the cash flow stream resulting from a deci-
ually an aggregation of many distinct cash flow
streame some of which are interrelated, Alao, the decision at
some point in the process may itself be dependent on previous
cash flow streams that are aggregations, Secondly, the resulte

ing cash flow streams usually are random variables giving the



model the inherent risk or uncertainty characteristics. There-
fore, the cash flow that results from an affirmative decision
may take on a range of values causing the net cash flow tc be
described in terms of a probability distribution., Hillier
continues this approach by developing the distribution of the
discounted cash flow or the present worth and employs this
criteria in a utility maximization model.

Before we can look at the distribution of the total net
cagsh flow, we should investigate the cash flow of the indivi-
dual investment, First, consider an investment project
independent of others and that the decision to initiate the
project occurred at some time jo. The actual investment cost
at Jo and all subsequent investment costs (negative cash flow)
may be random variables, Likewise, the returns from the
investment can also be viewed as a random varliable at each
period k., 1f we estimate the cash flow by its mean My 4 and
variance aij of some probability distribution, then the net
cash flow ies the difference of two random variables estimated
by their mean and varilance.

For the present worth case, the expected present worth is

merely the sum of the discounted mean cash flowe 6 Howsver, the

variance presents problems in the correlation batwesn ecash
flows from the same source but in different periods., Various

methods of handling the correlation between cash flows have

been descrived in {31 and 335}



Suppose one has estimated the mean #ij and variance aij
of the net cash flows for all investment proposals independ-
ently. 1f there is no interrelationship between the proposals,
then we have no problem in determining the mean and variance
of the present worth for each proposal. I1f, on the other hand,
the presence of some kind of interaction batwesn proposeals
exists, it can invalidate the simple additivity assumption.
For example, two proposals were estimated independently and
both found attractive. However, in combination they were found
to be competitive, thus, either or both became no lenger attrace
tive. Conversely, a proposal may be unattractive by itself,
but in conjunction with another project, may be very attractive.
In both cases, the analysis of the investment proposal in isola-
tion can result in misleading decisions. Thus, the criteria
for investment decisions should be modified to incorporate the
effects of interaction,

To formulate a cash flow that includes this =ffect, let
h(x) be defined as the net amount by which the individuel cash
flows xk(x) will be adjusted due to complementarity (positive
ad justment) or competitive interaction (negative adjustment).
Since the cash flows are random variables. it is logical ¢=
make the assumption that h(x) will alsc be a random variable,
Also, the effect of a proposal interacting with more than one
other proposal can be expressed in a "pairwise" combination

such that the total eifect is the sum of the pairwise effects,
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Therefore, we can define

h(x) = 2,24, ,(x,)(x,), 1=1,2,...,I, (2.4)

l1=1,2,...,I,
where 1 # 1 and (4, + u,,) is the net addition (positive or
negative) to the totai net cash flow due to complementarity
between the two proposals (i1 and 1) if both are accepted.
Therefore, the total cash flow for the two proposals (i and 1)
can be expressed as (ui + ”11) and (u1 + ”11)’ respectively,
The complementary effect of each proposal can be thought of as
their equal share in the total effect (ﬂil -;111). Thus, the
net cash flow can be generalized as
k - 1’2’...’K.

Expressing the cash flow in terms of its mean and variance, we

have

Xe(x) = B2, (1 # Tyuyox)x,, (2.6)
and

Vk(x) = Zizk(ai + Elqilxl)xi, (2.7)
vhere 1 = 1,2,...,1 and k = 1,2,...,K.

In gensral, the above expressions only mean that the
estimated cash flow of a proposal at each time interval must be
augmented by the interaction effect, Now that the mean and
variance of the total net cash flow can be found, the next
quegtion is to determine its probability diestriburion., In the

more gensral case put forth by Hillier (35, 26, and 37) based
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on the central limit theorum, he makes a strong argument for
assuming the random variables to be normally distributed. One
primary reason for making this assumption is that linear
combinations of normal random variables are also distributed
normally. Also, the central limit theorum indicates that the
sum of a series of random variables, having distributions
other than normal, can be approximated as a normal distribu-
tion under certain conditions.

For certain types of investment models, the normality
agsumption is very gsound. In others, however, the conditions
under which the normality assumption is made are not so readily
acceptable. In a later section, we shall discuss the effects
of using the deterministic equivalent of the random variable
in a stochastic programming model.

The development of estimates for interrelated cash flows
and the introduction of the investment decision function
allows for a great deal more flexibility in planning capital
investments, However, this decomposition of the model brings
with it more difficulty in computation. This computational
difficulty is compounded when considering the problems of risk
analysis, The next section will discuss briefly three methods
of risk analysis generally referred to as stochastic program-

ming which have been employed in the analysis of capital

investments,
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Consideration of Risk in Investments

Mathematical programming can be thought of as stochastic
if one or more of the coefficients in the set (A, b, c) are
random variables with a specific probability distribution,
When the probability distribution of the parameters is known
or a priorl specified, then an important class of decision
problems can be formulated to answer such questions as:

(1) how to decide on a decision vector which is in some sense
optimal and (2) how to characterize the sensitivity of the
decision vector to variation of the parameters.

These questions and others have been approached in the
literature on stochastic programming. The research, to date,
can be divided into three major areas: (1) stochastic linear
programming (SLP), (2) two-stage linear programming uncsr
uncertainty (LPUU), and (3) chance-constraint programming
(CCP). Generally speaking, all three approaches have the
following common characteristics; that is, they incorporate
the initial probability distribution of the parameters in
order to convert a probabilistic linear program into a deter-
ministic form and then define a set of decision rules having
some optimality properties. Of course, the methads by which
they incorporate the probability distribution and specify the
decision rules are different for each approach.

If the distribution of the parameters is unknown, the
proviem of defining the characteristics of the optimal vector

bacomes very difficult. Cases of this nature have been
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game theory (41 and 49). However, when the probability dis-
tribution of the parameters is known or specified, there are
three basic apprcaches to incorporating the random variable
into the framework of mathematical programming.

1f we assume that sample information is available, how-
ever the sample statistics of the parameters are unknown at
the time of the decision, then the sample distribution of the
activity vector x becomes dependent upon: (1) the restrictions
of the random elements imposed by feasibility, (2) the sample
design, and (3) the form of the population distribution.
Problems of this nature have been treated in the general frame-
work of stochastic linear programming (69).

If we consider the decision vector x to be nonstochastic
in the sense that we must determine the optimal solution for
the vector x given the random variation of the parameters
(A, b, c), then the specification of the decision maker's
attitude towards risk becomes very important (48). This
ganeral area has been approacned as chance-constraint program-
ming (CCP) and safety-first programming (SFP).

On the oéher hand, 1f we decompose the problem into two
stages to obtain an approximation, the first stage employs the
certainty equivalent of the random variable in the context of
an ordinary linear programming model. Then, the second stage
deflnoes a penalty functicn that modifles the determinlatic

approximation to incorporate the effect of the ramndom
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variable (70). This approach is usually termed two-stage
linear programming under uncertainty (LPUU).

A brief review of these methods and their application to
risk analysis in general and to capiral investment models in
particular follows.

Stochastic linear programming was first suggested by
Tintner (65 and 66) and was concerned with finding the sta-

tistical distribution of the optimal solution of a model such

as
max Z = c'x, (2.8)
subject to
Ax < b, (2.9)
x>0, (2.10)

Assuming the multivariate probability distribution for the
elements A, b, ¢ is known, then the probability of simultaneous
occurrence of specified values of the matrix A and the vectors
b and ¢ can be expressed as

prob (A, b, ¢). (2.11)
Tintner developed both a passive approach and an active
approach to finding the distribution of the optimal solution
from the multivariate probability function (2.11).

The passive approach assumes that all combinatione of the
random variables producing an optimal activity can be found,
Then it is possible to derive the probability distribution of
the cptimal soluticn that is compriacd oFf the set of optlmal

activities x. Since the assumption of independence of the
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coefficients is implicit in the programming model, only the

linear terms of the Taylor expansion is needed to find the

*
distribution of Zmax' The confidence interval for the

expected value of the function has been developed by Tintner

(65), Rabbar (! and 3), and extended by Sengupta (60 and 62)

and others, From a computational viewpoint, simulation has

been used to generate the values of the random variables which

are used to solve an ordinary linear program. By repeated

*
simulation runs, a density function for zmax can be developed.

The active approach to stochastic linear programming

transforms the problem into a decision or policy model, If we

modify the above model to the following form
max Z = ¢'x,

subject to
Ax < bD,
x>0,

where D is a matrix with all elements

0< dij < 1l and 23“13 = 1, J=1l,...,J.

(2.12)

(2.13)
(2.14)

(2.15)

The decision matrix D is composed of decision variables

dij which denote the proportional allocation of
.th
J

VAN AVIIRRA IR WA e
- P P e e N WARY O e P AN -

are fully utilized. The objective iz to choose

a best set of

dij values for the matrix D that maximizes the objective

function in accordance with the preference function of the

decision maker.
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Application of stochastic linear programming to problems
of resource allocation can bz found in (50 and 51). The
problem of decision analysis has been treated in (66), For a
critical appraisal of stochastic linear programming, see
Sengupta and Tintruer (61),

Certain types of stochastic programming problems, when
examined closely, can be decomposed into two or more stages.
By separating the problem intc stages, & decision rule or
strategy can be employed to govern the reaction to any given
value of the uncertain event. This approach has been termed
two-stage linear programming under uncertainty {(LPUU), Tha
basic approach to LPUU 18 to approximate the optimal solution
to the problem by assuming the parameters are deterministic or
assigned; this is the first stage. The second stage incorpo-
rates the effect of the random variable by modifying the first

stage solution. The model can be expressed as follows (70)

max ZJb(cJ)xj & Lqprobqizlcqlqu), {(2.16)
sub ject to
23‘13‘3 = b,, (firet stege constraint) (2.17)
Z48015%35 * 212gm1%q1 ™ Pqm’ (2.18)
(second-stage decision rule)
X4s Xq1 = 0, (2.19)

where q = 1.2,...,Q (no., of stages), } = 1,...,K and
Lmle a2 ., X (variohls sct), and & = 1,...,G and

Mm=q+ ly...oG (constraine set),
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The values of xj are fixed in the first stage before the
exact value of the random variable is known. The constraints
(2.17) contain only the first stage terms with the parameters
asgumed to be known, For the second stage and all subsequent
stages, there always exists a feasible level that can be
determined after all the random variables are known., Also,
there is a finite number of stages or possible sets of values
of the parameters (cql’ 8n1 qu). Each set of the parame-
ters' values can be weighed by the probability of their
occurrence probq. Notice in the second-stage decision rule
constraint (2.18) there are (G - q) Q equations. Thus, as the

number of stages increases, the problem becomes computationally

more difficult,

Linear programming under unc;rtalnty has been applied to
many areas where a decision rule is highly desirable for
planning purposes (20, 24, 27, and 43). Because of the decom-
position principle explicit to its formulation, LPUU has been
combined with other techniques that offset its computational
disadvantages. Avriel and Wilde (1) combined geometric pro-
gramming and two-stage linear programming under uncertainty to
handle a broad class of nonlinear stochastic problems,
Hillier's f2%) work on interrelated risky investments also
employed LPUU in conjunction with chance-constraint program-
ming to handle multi-stage investment planning models. Byvrne
et al. (0) proposed a similar approach to capital budgeting

problems.
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The concept of chance-constraint programming was first
introduced by Charnes and Cooper (1l1) as part of a model for
scheduling the production of heating oil to meet an uncertain
demand, While the statistical distribution of demand vas
known, its high degree cf variation exceeded the bounds of the
scheduling constraints making deterministic programming
unsuitable., A new approach was needed which would replace the
precise deterministic constraints by one that embodied the
intent of the management policy, not the hard and fast rule.
Thus, this new approach needed to represent bounds inside of
vhich management would like to operate “most of the time" but
not exactly "all of the time",

The resulting chance-constraint concept requires a con~
straint to hold with at least a specified level of probability
but not necessarily with probability of one. This charace
teristic distinguishes chance-constraint programming from the
previocusly mentioned linear programming under uncertalnty.

The latter requires that all possible combinations of values
of the random variables must have a probability of one of
occurrence, The concept of decision rules \hich result from
solving a chance-constrained problem are designed to present a
plan of action that is good most of the time but not all of
the time,

The exact nature of the decision rule is dependent, in
pact, on the posciblility of sample polnts luconsisteiv wiih

the constraints, 1in general, our object is to find an optimal
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vector of stochastic decision rules

X = (A, b, ¢c), (2.20)
of the generalized chance-constrained model

max Z = ¢'x, (2.21)
aub ject to

prob (A, < b) > @, (2,22)

where a 1s the specified tolerance limit of the constraint
such that it may be violated as more than 100(1l - a)% of the
time. The parameters A, b, ¢ are defined as before.

The linear decision xule X is based on the premise that
the function ¢ is selected from a prescribed class 2f func-
tions in which the matrix A and vector ¢ contain only constant
elements and X is restricted to being a linear function of the
random variables in b. Much of the earlier work was based on
this type of linear decision rules (10, 11, and 12).

Another type of decision rule which often arises in

budgetary planning models is called the zero order decision

rule. In this type of rule, the decision vector is not per=-
mitted to be an explicit function of any of the random
variables involved in the model. In such cases, the decision
maker wants t6 kaow all 6f his program values in zdvaiice of
any observations being made on the random variable. Applica-
tions of this decision rule are numerous; for example, see
(14, 17, and 18),

A more recent deciszion rule that, in part, follows the

Gdecomposition concept of two-stage linear programming under
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uncertainty is the general n-period decision rule. Specifi-

cally, the rule contends that the decision required at the jth
period does not have to be made until the beginning of that
period. Thus, it is desirable to have decision rule xj deter-
mined in a conditional manner or the experience accumulated
through all previous periods, as well as implicitly reflecting
future possible states of the system. Therefore, Xj is allowed
to be a function of random variables observed in previous
periods but not of the jth or subsequent periods, In this
way, xJ maximizes the use of information accumulated up to the
time the decision rule must be implemented. Specific examples
of this decision rule can be found in (15).

The basic core of literature on chance-constraint pro-
gramming centers around the use of linear decision rules and
normal random variables. The basic objective of the program is
to convert the chance-constraint model into a deterministic
equivalent linear or nonlinear programming model. The ration-
ale for these assumptions is that they led to a compatible
linear or nonlinear problem The general method for obtaining
the deterministic equivalent for & chance-constrained problem
can be developed as follows,

Determine the decizlon vector x that
z .
min 1€ 5% 59 (2.23)

sub ject to

L8y 4%y 2 by, L= 1,...,1, (2.24)
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x4 2 0, J= 1l,...5J, (2.25)

where aij" are the congtraint coefficients, the bi's are the
resources available, and cj's are the elements of the objective
function. The chance-constraint formulafion can be developed
from the above general form of the mathematical programming
model by assuming the constraint coefficients aij are random
variables with normal distribution. The probability that the
constraint inequality containing the random variable must be

satisfied is denoted as ;. Thus, the constraint set (2.24)

can be stated as
prOb (zjaijxj 2 bi) Zal’ i = 1’000,1, (2.26)
j = l’Oit’J.
Let us assume for the 1th constraint that the aij'a are

independent random variables with means ;il’ ceey ;1J with

variances az(ail), ooy az(aiJ). Thus, we can redefine the

ith constraint as

u, = Ejaijxj’ J=1,...,J. (2.27)
This variable is normally distributed with mean

Hy = Lyayyxq, (2.28)
with variance

2(a,) = o) z(a“)x%, jul,...,d. (2.29)

Each constraint can be xrestated asg

(T
<«
~/
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By expressing the left side of the inequality in terms of the

standard function, we have
« o0
prob (ui > Di) = Ibih(“i)dui’ (2.31)

where h(ui) is the normal density function of u;. By setting
u; - u u, = r.a, .X

Zi = = ’
(? (u)) (Zja“(aij)x3)°

J=1,...,J, (2.32)

and substituting the above in the lower limit of integration

of (2.31), we obtain

prob (u, 2 b,) = J‘:f(zi)dz, (2.33)
where
b, - L.a, .X (2.3)
re—t—ddLl 5., .
(T 40 (aij)xj)k
and f(Z) is the standardized normal density function

£(2) = 77—1-5 . exp (~%y%). (2.35)

In terms of the standarized normal left-tail cumulative

function

b, - = a, .x
], (2.36)

prob (u, > bi) = 1 - ?[
(2 7%(ay )x3)
returning to the constraint form (2.30), we can express the

left-hand side as

b, - E ;i x
F[ ]51-0', J= 1,...,J, (2.37)
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employing the inverse function, we obtain
b, - T.a,.X

< Fl - a). (2.38)
(EJa (aij)xj)

For simplicity, let the expression (2.38) be equivalent to
$(ct) where we can define ¢(a) as the percentage or fractile of
tolerance for each constraint, e.g., if a= ,95, then

¢(a) = ,05, We can now write the deterministic equivalent
constraint as

- 2 2
E By xy + 0(o)(E0%(ay x0)T 2 by, (2.39)

To illustrate the use of chance~-constraint programming, we can
use the problem of determining the optimal mix of cattle feed
at minimal cost. This problem is well known in the literature
of linear programming (6). The problem is concerned with
finding the optimal mix of raw materials that meets the
nutrient requirements at minimal cost. The data for the

problem 18 given below:

Xy ) X3 Xy, by
Ground-
Sesame nut Require=
Bagley Oats flakes  mea}) ment
Percent
protein (a; J) 12,00 11.90 41.80 52.10 21
(az(aij)) 0.28 0.19 20.50 0.62
Percent fat (aij) 2.30 5.60 11.10 1.30 5

Cost per ton
{guiiders) 24.55 26.75 35,00 490,50
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The problem can be formulated as

min Z = 24,55x, + 26.75x, + 39.00x5 + 40.50x,, (2.40)

subject to

12.00x1 + 11.90x2 + 41.80x3 + 52.10x, + (-1,645)

(.26x% + 1952 + 20.5x5 + .62x2)% 2 21, (2.41)
2.30x1 + 5.60x2 + 20.50x3 + 1.30x4 > 35, (2.42)
Xy + Xy + X3 4%, =1, (2,43)
X)s X9y X3y X, 2 0. (2.44)

For more detail of the problem, see (6).

Comparing the solution of the linear form and the stochas-
tic form below, we can see that by relaxing the constraints
the optimal cost is changed as well as the values of the opti-
mal variables, Note that the optimal cost increased in the

stochastic case. This increase can be attributed to the

Aannd Adamard am AfF nwd nlr Av smAaantradntr $n s nrahiom The
CCORCLCCTaLa0 20 DLl O LRCLTLLNL, =L Tl S proebitm. 2ne

previous linear model, by ignoring the uncertainty aspect,

compromised the solution and any subsequent decisions.

Linear case Stochastic casge
Z*rax = 28.94 Z*max = 29.89

X, = .6852 x, = .6359

Xq = .3021 Xq = 3127

X, =0 X, .0515
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The applications of chance-constraint programming to
problems of decision analysis and resources allocation are
summarized in (40). Since the concept of chance-constraint
is particularly applicable to the decision problems in finan-
cial planning, it is worth mentioning a few typical models
found in the literature.

One primary problem in investment planning is the
liquidity requirements. Models, where the liquidity condition
is chance constrained, can be seen in (4, 7, and 8), 1In
conjunction with the liquidity conditions, a group of problems
dealing with the extent that borrowing and lending can take
place in an investment model have been examined in (18)., The
classical portfolio model hus been extended to chance-~
constraint programming (51, 52, and 53). The primary character-
istics of this type of model are the loss constraint and the
capital available constraints., Research and development plan-
ning have also been investigated using this concept (17).

Here the main feature is the way in which the model takes into
‘account the possibility of a "breakthrough',

Finally, capital budgeting problems have been explored by
(7. 8. 52, and 53) under many assumptions. RByrne et al. (8)
examines the use of payback methods as being chance constrained
to study the recovery rate of the initial investment, Other
financial planning models can be found in (40).

1ne three methods of stochastic programming, discussed in

this scction, have a common problem, that of difficulty in
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computation. The linear programming under uncertainty (LPUU)
presents problems in evaluating the second stage where all
possible combinations of the random variables are expressed,
Stochastic linear programming (SLP) and chance-constraint
programming (CCP) present computational difficulties by the
introduction of nonlinear terms in the model. Computational
procedures for nonlinear programming, until recently, have
been lacking in their ability to handle complex problems such
as those present in investment planning. Recently, however,
the development of two computational methods of handling
general nonlinear programming problems shows a great deal of
promise, The two methods, sequential unconstrained minimiza-

tion technique (SUMT) and geometric programming, are discussed

in the next section,.

Computatiocnal Aspects of Risk Analysis

Mathematieal pragrammine  in saneral  has boon 22id oo be
the logical extension of classical optimization theory, formu-
lated in such a manner as to facilitate the use of digital
computer systems. A general statement of the mathematical
programming problem iz to find a vector x that solves the
prcblem

min £(x), | (Z2.45)

subject to

8‘ (x) Z_ Op i = 1’2’000,10 (2.46)
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This constrained optimization problem can be solved by means
of the Lagrange multiplier technique (23 and 75). This
method, howeQér, requires that sll constraints be exsct equali-
ties, Therefore, the constraint equation must be modified,
without loss of generality, to include a slack variable that
will convert the inequality into an equality constraint

81()() - x. = 0, (2.47)

Now the problem can be formulated as a Lagrangian function

L(x,A) = £(x) - Z,;),(g4(x)), {=1,,..,I, (2.48)

vhere Ai is the Lagrange multiplier of the constraint function.
By solving this function for all values of x and A, a local
and global optimal can be found., This problem, when trans-
formed into the Lagrangian form, becomes an unconstrained
optimization problem that can be solved by ordinary calculus,

The computational problem with the Lagrangian method is
that ai1i faseinie comhinarione o0f » and b muze bo found bofcoc
the global optimal is ascertained, Computational difficulties
are compounded by the increasing size of the model, i.e., the
nunber of variables and constraints and also by the intro-
duction of nonlinearity. Therefore, direct Lagrangian
solutions are, to date, not computationally feasible for large
problems.

Fiacco and McCormick {29) state that the Lagrange method

is inextricably associated with every computational method of

mathematical programming. Por this rea’on, compuiational
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techniques to handle complex nonlinear cptimization models
have been based on the Lagrangian theory. Two current methods
which will be discussed hers are the sequential unconstrained
minimization technique (SUMT), developed by Fiacco and
McCormick (29), and geometric programming, developed by
Duffin, Peterson, and Zener (23).

Fiacco and McCormick developed their computational
technique on an idea proposed by Carroll (9). The general
form of SUMT can be expressed in the following way. Find a

vector x that will

min £(x), (2.49)
sub ject to

g (x) 20, 1=1,2,...,m, (2.50)

h (x) > 0, j = mel,. .. M, {2.51)

where there exists at least one point x such that gi(x) >0
for L = 1.....m. The algorithm defines an unconstirained

auxiiiary function

prob (x,rl) = f(x) + rlzi(gi(x)'l) + ri%2j3§(x), (2.52)
where r, > 0O, i=1,...,my and j = me+l,...,M.

The auxiiiary function is the same as the Lagransian
function given above, They differ, however, in their compu-
tational procedure. For example, as a starting point, let X,
gatisfy the condition of (2.50); proceed from X, Lo a point
<(r)) that approximaies the minimum of prob (x,rl) within the

set of points satisfying gi(x) >20,4=1,...,m. Next form a
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new function

prob (x,ry) = £(x) + r:ziii_(gi(x)"1 + ri Jgg(x), (2.53)

where ry > 1, > O, i=1,...,my and j = mé¢l,...,M.

Starting from x(rl), approximate the minimum value of
pxob (x,rz). By continuing this procedure, a sequence of
points (x(rk)), k = 1,2,3,..., can be generated that respec-
tively minimizes the auxiliary function prob (x,rk) where Ty
is monotonically decreasing to zero. The basic postulate
proven by Fiacco and McCormick (29) is that the sequence of
uncbnstrained minima (x(rk)) will approach an optimal solution
to a mathematical programming problem of the form defined
above., The rationale for SUMT is given by Bracken and
McCormick (6) and is as follows.

The second term in (2.53) can be thought of as a penalty
factor attached to the objective function f(x) and aasures
that & minimwn of the auxiliary function is achieved in the
interior of the inequality-constralned region. This is accom-
plished by balancing the avoidance of boundaries and
minimization of f(x). To illustrate, consider the trajectory
of points that tend to minimize prob (x,rl) starting at x_.
The locus of these minima define a curve on which the
prob (x,rk) ig continually decreasing; therefore, no point on
the trajectory can exceed the initial value of prob (xo,rl).
The feasible boundary 18 defined by one or more of the

5i(x) m 0, It cap be ghoum that the value of tha auxiliary
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function goes to positive infinity as the boundary is approached
from the interior region. Consequently, the boundary can never
be pierced by the trajectory and the minimum of prob (x,rl)
must be a feasible interior point. Along the same line, the
third term in (2.53) can be thought of as a barrier function.
As r, goes to zero, the third term would go to infinity
unless each gi(x(rk)) is zero, in which case the auxiliary
function would force the gi‘s to zero. Therefore, we can say

that a global minimum can be found in a compact set containing

every limit point of any sub-sequence of x when the following

conditions hold

(1) lmit rlgigl(x)-l = 0’ i. = l,...,m, (2.54)
K—» 00

(2) 1lmit r jgj(x) =0, j mma+ 1,...,M, (2.55)
Kk — e

(3) ;imit prob (x,rk) = V*, (2.56)

wihere K is Tne iteration number and V* 18 the optimal.
Clearly, the computation of the SUMT method is easler than the
direct application of the Lagrange multiplier method. Other
motivations for using this tremsformation is that constraints
satisfied at any iteration can be dropped, thereby reducing
the size of the model. The theoretical development of the
technique 1s given in (28 and 29) for "well-behaved" convex

problems. For non~convex problems, Strong (64) has shown that

the existenca aof a global minima af tha anwiliave fumatd

i

converges te the global colution O e programming proviem.
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The use of SUMT as a computational procedure for the
nonlinear programming problem has been documented by Bracken
and McCormick (6). The use of the technique in risk analysis
is demonstrated by Portillo-Campbell (58), Other applications
and information are described in (75).

Geometric programming is another mathematical optimization
procedure for dealing with nonlinear functions., The theory
establishes the existence theorems characterizing optimal solu-
tions and the framework for computational algorithms., An
important feature of geometric programming is that it sesks
optimal solutions without knowing the corresponding policy

variables. Instead of seeking the optimal values of the
independent variables first, it finds the optimal distribution
of the total (cost) among the terms of the objective function.
The optimal distribution of cost can be formulated in a con-
strained minimization problem referred to as the primal. The
duality theorem developed by Duffin, Peterson, and Zener (23)
relates the primal to a computationally attractive maximization
problem called the dual. Within this context, ws can discuss
the use of geometric programming to solve nonlinear programming
problems that arise in capital investment planning.

Geometric programming derives its name from the geometric
inequality which states that the arithmetic mean is at least
as great as the geometric mean., The most important feature of

tnis concept is thne orthogonality of its vectors., To illus~-

trate the concept, lat
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(v, - v)2 2 0, | (2.57)
thus

( 2 2 2 2,58

Y1 = “Yyy2 + Yo > 0, (2.58)
adding 4y1y2 to both sides

yf + 2y,yy + Y% 2 4y1¥9» (2.59)
taking the square root and dividing by 2 results in

%yl + %YZ Z Y§Y§- (2°60)

The problem is now expressed in the geometric inequality form.

A more general expression is

§

i
zigiyi 2 MYy (2.61)
where
¥i»6; 2 0 and L, §, = 1, (2.62)
rearranging the variables by letting vy = 51’1
y. ¢
Ty, 2 m (Y, (2.63)

now let

a a a
g(y) = Eiyi vhers y, = ci(tln . t212 . e tnin), (2.64)

By finding a minimum of g(y), the set of optimal weights (61)
will be found that satisfies the geometric inequality, There-

fore, the primal program can be expressed as

(WS-

min, g.(t) = ey, 4= 1,00, (2.65)

J= 1l,...,0,
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sub ject to

(t) = Z,e,m taij <1 k=1 (2.66)
&k B A R 214, yees9Dy . .

1= MyseoesBps
where ty> 0, for i = 1,...,n, which forces g (t) < 1, for
k = 0,1,...,p,

where
my® L, m mn _;+ 1, and k= 1,...,p. (2.67)

The exponents aiJ are arbitrary real numbers but the cj
coefficients are required to be positive, thus requiring gk(t)
to be a positive polynomial termed posynomials., The dual
program is formulated from the right-hand side of the geometric
inequality in which the weighing function 61 is found that
yields an optimal solution to the problem. The general form

can be expressed as

max v{{) = (ﬂi(éi)gi)ﬂkkk(é)kk(e): (7 .AR)
gub ject to

L,y = 1, i=1,...,n, (2.69)

Eaijei = 0, L=1,...,n,, (2.70)

M(E) = DR L= my.e.,n, (2.71)

where aiJ’ cJ, m.» and n, are the same as for the primal
program, The first conztraint is the normalizing condition,

while the second is the orthogzonality condition,
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While the concept is challenging, some computational
limitations restricted the early application of geometric
programming. For example, the function gk(t) in the primal
program is generally non-convex for which no existing computa-
tional procedure existed at that time. Secondly, the
limitation of only using posynomials restricted its general
application. Some of the extensions of geometric programming
to overcome these difficulties and produce an efficient compu-
tational procedure for handling general nonlinear programming
problems will be briefly described.

Geometric programming requires positive coefficients
since they are raised to a fractional power in tha geometric
inequality form; thus, negative numbers are not allowed, This
restriction was relaxed by Passy and Wilde (57) in their
development of a quasi duality theory for geometric program-
ming called generalized polynomial programming. Passy
introduced a signum function to the polynomial term, such that
every term yields a program very similar to a geometric pro-

gram. The general form of this program is

min go(x), (2.72)
cubject to
gm(x) < am(z + 1), m= 1l,...,M, (2.73)
vhere
o Sne
&, (x) = L tCnt Xy 0 tmL,..0,T, (2.74)

nnl’..l,N.
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In a similar manner, the dual program can be constructed.
While this dual program is not of a constrained maximization
form, it does have linear constraints which have made it com=-
putationally attractive. Blau (5), using the theoretical
results of Passy (56), developed an algorithm to solve gen-
eralized polynomial programs. Blau's Lagrangian formulation
made certain assumptions: (1) the constrained signum function
os and the sign of the objective function are known, (2) the
primal Lagrangian function is of the form

L(x,\) = so(x) + Zm}m(sm(x) -0), m=1,...,M, (2.75)

and (3) at the local minima, the optimal values of the
Lagrange multipliers Am are strictly positive. This means

that all constraints are tight or active at the optimal point.
This condition restricted the use of geometric programming less
than the original case but left something to be desired.

One aspect of Blau's algorithm was his use of the separa-
bility of the linear-logarithmic system that gives a solution
to the dual vector ¢ from a given vector ¢f Lagrange multi-
pliers. Based on the linearization, Duffin (22) has shown

that a geometric program can be defined as a set of linear
programs. Computationally. this mesnt that gecmetric
ming has the potential of becoming as efficient a nonlinear
algorithm as linear programming has become for linear systems.
Oleson (54) extended Duffin's analytical use of the lineariza-
tion principle to develop an algorithm that uses the efficiency

cf simplex linear programming to solve geometric programming
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problems, The procedure is based on parametrically changing
the objective function of a linearized geometric program. This
method, based on the thecry of condensation of polynomials
(22), consists of three phases. The first converts the geo-
metric program into a log-linear program where all terms are
expressed as polynomials and all constreints are converted to
monomial inequalities by means of a weighing function. Also,
the conversion is made so that all constraints are tight or
active at the optimal. The second phase solves the log~linear
program (LPA) to find a feasible solution that allows a geo-
metric program to be consistent. This step locates the region
in which the optimal may be found. Finally, another linear
program (LPB) is formulated consisting of the weights required
to convert the constraints to monomials. The sclution of this
linear program parametrically changes the weights of the opti-
mal variable until the objective function of the first linear
program (LPA) is found, such that all geometric program con-
straints are tight,

Oleson states that the advantages of this procedure are:

(1) the degree of difficulty or the size of the problem is not

increased and (2) the procedura utilizes the aimplex linear
programming routine in a parametric fashion. He also points
out that its limitation lies in the lack of proof of global
optimality which is yet tc be developed.

According to Wilde (73), geometric programming has great

potential; most of it 18 as yet unrealized. However, in its
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brief history, the method has been successfully employed in
several engineering design problems (15, 23, 44, and 56),
Economic application to resource allocation can ba found in
(21, 23, 33, and 58). Other economic applications, such as
economic growth models, is treated in (58). Avriel and Wilde
(1) applied geometric programming to the nonlinezr problems
found in stochastic programming.

In the above discussion, it has been shown how the tradi-
tional cash flow can be modified by the introduction of a set
of decisions that either permit or prevent a cash flew to be
realized. Also, the traditional mutually exclusive cash flow
estimate was extended to include the complementary or competi-
tive effects of other investments. Once the mean and variance
of the cash flow estimate is determined, the next problem is
to find the probability distribution of the risk associated
with the invegtment. The treatment of risk or uncertainty in
the estimate of cash flows was illustrated in the three
methods of stochastic programming. Specifically, the chance-
constraint programming method (CCP) assumes the probability
distribution of the random variable to be normally distributed
and converts the stochastic model into itrs datarminiarie
equivalent, However, the deterministic form also introduces
nonlinearity into the model. Generally, nonlinear problems
have presented computational difficulties. However, recent

developments in this area allow for efficient solutions to
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large~scale complex problems such as are found in investment
planniﬁg.

Now let us examine the above method of handling uncer-
tainty or risk in investment models from the standpoint of the
distributional assumptions. Hillier presents a model based on
the present worth of a discounted cash flow. Since it 1is
known that the net cash flow at any point in time may be posi-
tive or negative, the assumption was made that the net cash
flows may be asgumed to be normally distributed. Hillier also
illustrates how the individual cash flows may be nen-normal,
but the present worth may be approximated as a normal distribu-
tion based on the central limit theorum. The idea of a
normally distributed net cash flow has been used in several
capital budgeting and portfolio models. This normality assump-
tion is also consistent with the present assumption of chance-
constraint programming in regard to the distribution of the
random variables. Consequently, it has been used frequently
for the analysis of risk in investment planning.

At this point, two basic problems exist in regard to the
net cash flow concept and its normality assumption. The net
cash flow at tne end of any nerind is rtha difference betueen
the investment cost during that period (outflow) and the
receipts or yleld from the investment received during the
period (inflow). 1t would be logical to assume that tThe net
cash flow would be normally distributed if the two components

were distributed normally. Unfortunately, this is not the
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case., If we assume investiieiit coats and receipts are random
variables; the range over which they could vary would be
restricted to the nonnegative domain, Since both investments
and receipts constitute tangible cash flcws, they must be
expressed in positive terms. Therefore, it would be desiradble
to have a distribution that is wholly contained in the non-
negative domain yet retains as many of the features of the
normal distribution as possiblg.

Sengupta (59B) has discussed the use of nonnegative distri-
butions in conjunction with stochastic programming. In
particular, his discussion of the use pf the chi-square
distribution in chance-constraint programming has application
in modeling capital investment plans, Two aspects of this
approach are of particular interest. First, the restriction
of the linear decision rule in chance-constraint programming
may be replaced with more general functional forms that con-
siderably enhance the scope of application in dynamic models
that result in nonlinear objective functions., Secondly, it is
no longer necessary to assume that the decision maker's utility
function is quadratic or of a specific form as was required in
the Markowlitz (46) atudy,

In the following sections, the concept of a chi-square
distribution for the random variables in certain investment
models will be explored in the context of chance-constrained
programming. 1Two investment models will be developed., A

portfolio model, originally developed by Naslund (52), will be
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formulated under the chi-square assumption and the results
compared to those of Portillo-Campbell (58) who obtained a
direct solution to the model., Next, a capital budgeting model
will be developed employing the payback conatraint along the
line of Byrne (7) and Weingartner (72). This model will also
employ the chi-square assumption in a chance-constraint

program.
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CAPITAL INVESTMENT PLANNING MODELS

Planning of capital investments is concerned not only
with the facts that risk and interdependence oi investment
proposals exist and should be accounted for in the decision
process, but planning must also be aware of the way in which
the model handles these factors. The example of finding the
optimal cattle feed mix illustrated how the decision maker
could be misled by following the advice of a model that neg-
lected the effects of uncertainty. 1t is also possible to
mislead the decision maker with recommendations that consider
the effects of uncertainty in an inappropriate manner,

There exists a wide class of problems in engineering and
economics where the input coefficients and the resources
available are random variables, but are nonnegative. This
characteristic calls for a class of probability distributions
that are wholly contained in the nonnegativa ranga. The nora
mality asgsumption of chance-constraint programming would not
be appropriate in cases such as these, Consequently, if the
chance-constraint method is to be used for risk analysis, then

the normality assumption must be replaced with a nonnegative

distribution,

A

A nonnegative distribution to replace the normal must be
selected in such a manner a&as to retain as many of the desirable
characteristics of the normal distribution, while satisfying

the nonnegativiry condition, Several distributions fall into
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this class with varyihg degrees of attractiveness. Sengupta
(59A) has discussed the potential use of several nonnegative
distributions in conjunction with stochastic programming. The
choice of the chi-square distribution to replace the normality
assumption is a logical selection since the chi-square is in
fact a squared standard nofmal and retains the reproductive
properties similar to those ¢f the normal distribution.
Secondly, other nonnegative distributiors, such as the exponen-
tial, gamma, and poisson can be closely approximated by the
chi-square distribution. However, the replacement of the
normal by the chi-square makes the chance-constraint program
computationally more difficult. This problem, however, can be
transformed into a generalized polynomial programming problem
that can be computed very efficiently (54 and 59A).

The choice of the chi-square distribution to be used in
the formulation of chance-constrained investment models was
motivated by two reasons. First, the computational difficul-
ties are partially offset by the availability of numerical
tables for the central and non-central chi-gquare distribu-
tions; therefore, the extension of risk analysis to
consideration of various confldence
Secondly, the reproductive properties mentioncd earlier are
extremely useful when examining a series of cash flows that
are independent random variables, i.e., the property of a

variate by which the sum of a number of variates having a
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fixed distribution reproduces the same distribution in form.
To illustrate the use of chi-square in chance-constrained
programming, consider the model developed by Sengupta in
(59A and 59B).

max Z = chjxj, i=1,...,1, J=1,...,J, (3.0)
subject to

prob (Ei g4%4 S <b ) 20y, (3.1)
x, 2 0, (3.2)

where the parameter °1J’ xj, and cJ are defined as before.
Assume the resource vector bi is composed of mutually independ-
ent random variables distributed chi-square. The degree by
which each constraint must hold is preassigned by the decision
maker (i.e., the condition must hold 95% of the time, thus

o= ,95),

First, consider each bi in the resource vector b to be

a O O N I -
Lotoituteld CLLA-GGUara with Kialwin 0L esiaimauvie nean &\Dii = Di

and variance V(bl) = 2b1, thus, the nonnegative frequency

function of (bi) can be expressed as

(5,/2) _ (5, /2)7}
f(b) = (2 Y T /2N ! :

exp (=b1/2)dt. (3.3)

Since we know that the available resources must be greater

than or equal to their allocetion, then

prob (x4 (b ) > ZJ 54 j) = 1, Jrly.e.,d. (3.4)
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Now the only remaining problem is to find the upper bound on
f(bi) that satisfies the confidence limits oy . Recalling that
the upper limit on the integral of f(bi) meets thiz condition,

we can define (3.4) as
prob (XZ(EL) W) =ay, (3.5)

where w is the upper bound of bi that satisfies the confidence

limits di'

To illustrate, let the mean value of b, be 10 and the

confidence limit be(xi s 0.99, Therafore

prob (X2(10) < w) = 0.99, (3.6)
using the chi-square tables for the confidence interval of
0.99 and degrees of freedom 10, we find w to be equal to 2.56.

Thus, the deterministic equivalent linear program of the

chance-constraint model is

max Z = Lcx,, 1=1,...,I, j=1,...,J (3.7)
sub ject to

L8y 4%y < 2.56, (3.8)

x> 0, (3.9)

By comparison, assume the random variable bi is normally dis-

variance: V(b,) = 2(51) = 20,

Recalling that from the cumulative standard mormal F(w)., we

found that
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FFl(1-a) = Fl(1 - 0.99) = -2.33, (3.10)

and the deterministic equivalent of bi would be
5 ¥ gl 5
b, + V(b,)* . F77(0.01) = 10 + (20)* . -2.33 =

-0.415, (3.11)

thus, the constraint equation corresponding to (3.8) is

The optimal solution for this problem is x = 0 where the solu-
tion to the chi-square formulation could obviously be better,
This simple comparison illustrates the impact of the normality
assumption on models that require a nonnegative distribution,
In the next two sections, capital investment models will
be discussed in which the chi-square assumption will be used

in the context of chance-~constraint programming.

Portfolio Expansion Model

In this section. we will develop a portfollo expansion
model along the lines of Naslund (51)., The model will be con-
cerned with the optimal timing or planning of investments in
order to maximize the total expected value of the portfolioc at
some future horizon point (planning interval). This model
differs from trhe more traditional portfolio selection model
that is static in nature and is concerned with determining the
optimal proportion of the portfolio that should be invested in
various types of securities. The portfolio expansion model is

dynamic in nature and can generally ba dagcribed as the problen
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of determining the optimal amcunt to invest in the portfolio

at each point over the planning interval. The model is con-
strained by the amount of risk the investor is willing to take,
expressed as a loss constraint, and the availability of capital.
The interrelated risky nature of the portfolio expansion model
is well suited to chance~constraint programming employing the
zero order rule for investment planning. Before describing the
model, we will discuss briefly some of the research on port-
folio investment.

There exist several discussions in the literature of the
choice between holding risky assets, such as in a portfolio
versus holding money. Tobin (68), for example, makes the
assumption that the investor will venture some proportion of
his investment dollar in risky assets. That proportion is
subject to many things, such as risk, taxes, interest rates,
and etc, Tobin's model develops an indifference map between
the proportion of the investor’s venture capital held in cash
versus in his portfolio. The indifference curves are based on
the mean and variance of the return on investments., Tobin
suggests that, by the use of such an indifference map, it
would be possible to study the effects of changes in interest
allocated to risky investmente. The risk involved in port-
follo selections is derived from the stock market prices over

time. These pricCes are Guly known pxobavililsticaliy.
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The stock market is generally assumed to be a perfectly
competitive market, in that, if certain stocks appeared to be
too low at some point in time, investors would start buying
causing the stock price to increase. In general, situations
of this nature are caused by the availability of information
and there is no reason to assume that information is made
available to all investors in a systematic way. 1f the
changes in price, due to the availability of information, are
assuned to be independent and identically distributed random
variables with finite mean and variance, the central limit
theorem would suggest that the price change over time may be
normally distributed.

Various modifications of the normality assumption have
been suggested to find decision rules for the investor.
Naslund based his dynamic portfolio model on the normality
asgumption developed by Osborne (55). However, a strong
criticism of the normality assunption was put forth by Fama
(25) based on empirical data. He found that the empirical
distribution had a larger area under the extreme end of the
talls than the normal distribution. From this, he postulated
that investors cannot respond fast enough to take advantage of
every prilce change; therefore, he will always pay a little
more and obtain a little less than an optimal. The empirical

distribution put forth by Fama is called the stable Paretian

dlstribution (253).
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1f the intent of Fama‘s argument in respect to the
selection of a probability distribution to represent the
random variables (stock prices) is examined, a strong case for
the chi-square distribution can be put forth. In addition to
the nonnegative characteristics mentioned previously, the
ability to approximate other distributions with the chi-square
would enhance its operational desirability.

The portfolio expansion model developed in this section
will assume the random variables are distributed as independent
chi-square. The risk asscciated with the portfolio decisions
will be encompassed in a chance-constraint program. The
resulting nonlinear programming problem will be solved by
means of generalized polynomial programming (geometric program-
ming).

Consider a rational investor who wishes to maximize his
expected gain in the stock market that will increase the value
of his portfolio at the end of a specified horizon. Assume
the investor has allocated funds for his consumption needs up
to the horizon and knows what funds will be available for
investing at each period. However, the decision to invest the
available funds in risky stock at some period or to hold the
funds in cash for later investment s dependent upen two con-
straints, First, the loss constraint which sets a probabilistic
limit on the possible losses beyond a specified amount; and,
socondly, the capital consiraint whieh aiso specifies a proba-

bilistic limit that investmente a:t some point should not exceed



49

the available funds which varies according to accumulated

capital gains.

The problem can be expressed in the following manner

P, - P
max Z = E(Z,x, (—2=L)), (3.13)

subject to

P, - P
prob (xi(-£§———izl) 2 -L) 2 a, (loss constraint) (3.14)
i-1

- P
prob (x; < k, + D I -1 j"2) 2 ng, (3.15)

(capital constraint)

xy 2 0, (3.16)

X, is the accumulated amount ($) invested in stock or
stock group in period i,
Pi is the stock price or group of stocks priced in
period i,
i is the maximum loss that the investor is willing to
accept 100(a)% of the time,

Vo A~
£

g is the risk level for losses at period i, set by

4 is the capital accumulation other than from returns

from earlier investments,

ny is the risk level for the capital constraint in
period i,
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P, - P
For simplicity, let a = -LF-——L:i for the change in stock
i-1
prices over the interval i-1 to 1. Also assume that the

change in stock prices observed in previous periods

Pior = P32
( PJ-Z ) also be denoted as a; as (j goes to i),

Assume that the change in stock price is a random varia-
ble distributed as an independent chi-square with mean (:i)
and denoted by XZ(;i).

The loss constraint (3.14) is specified by the investor
to be the minimum value he will allow his portfolio to assume

at some point in time. Thus, we can express the value of the

th

portfolio of the 1™ period as the sum of the value gained

ax, during the interval plus the min value set by the

investor LL or

a;x; = L 2 0. (3.17)
i Ly o Lo Bidesy L LUsD cumasiraint is oL ine lform
definecd in (3.14). Likeowise, tho capital constraint can be
thought of as limiting the stock buying to be within the funds
available, Here too, the invostor has set the amount of money
ki he is williag to invest in the portfolio at some time {.
The total funds available for investing is the sum of the money
received from previous stock trading and the new allocation of

funds from the investor at time 1.

k, . a (3.18)
1 + Zjaij' (3.18)

where j denotes previous activity in the portfelio, By using



Sla

(3.25) as the resource vector, then we have the constraint
defined in (3.14).

To simplify computation, we will consider the same three-
year planning horizon as did Naslund, as well as the data, in
order to compare the solutions. Next, we can expand the model
for the three-pericd planning horizons

max Z = E(a;x; + 8,X, + &3%3), (3.19)

subject to the probabilistic loss constraint for each period

prob (a;x, > L) 2 a,, (3.20)
prob (ayx, 2 L,) 24a,, (3.21)
prob (azxq > Lj) 2 ag4, (3.22)

also subject to the capital constraints that are also probabi-
listic in the second and third periods. The initial cash

endowment in the first period is not subject to uncertainty.

Xy < Ky, (3.23)
prodb (xz <k, + alxl) 2 ny, (3.24)
XyXoXq 2 0. (3.26)

Table 1 contains the initial values ansigned by Naslund (51).
The chance-constrained programming model with chi-square

variates was first developed by Sengupta in (59A and 59B).

Thie development will be used in the formulation of the port-

folio model.
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Table 1. Initial values of Naslund's portfolio model

Values Confidence level

Loss limitation:

period 1 L1 = «1300 “1 = 0,95

period 2 L2 = -1000 a, = 0.95

period 3 Ly = -1000 3 = 0.95
Capital limitation:

period 1 k1 = 7000

period 2 k2 = 5500 ny = 0.99

period 3 k3 = 9000 ng = 0.99
Change in stock prices:

mean value a, = 0.05

;2 = 0,05

8.3 =2 0.05




52

Now consider the distribution of the quantity
Yi. = zjaijxj’ J = 1,0‘.’J. (3.27)
1f the mean value of each aij can be approximated by an even

integer 2313 = :ij’ then the exact distribution can be defined

as

y
prob (Y1 > yo) s ZJZBdJ“ prob (xz(Zs) > ;%), (3.28)

vhere j = 1,...,J, 8 = 1""’313' and dj' is a constant

involving only the xj'a defined as

fj(0)(31j - 8)
dyg = (gij s Yt (3.29)
where
£,00) = (L2, K9)"%y2 (3.30)

3T idy Xy %5
Fortunately, simpler approximations of the distribution of Y1
are available (5Y) which can be employed in mon¢ cases. For

example, let Yi be approximated by

Y, = ktxz(h), (3.31)

vhere the degree of freedom of Y, i

i

(T a; x )2
h = N (3.32)
(Ejaijxj)

and the weighing function of noncentrality of Yi ig

ziEi.x?

zjaijxj

R

L = (3.33)
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We can now express the general chance-constraint equation as
prob (k,x2(h) < b,) 2 a,. (3.34)

An approximation of (3.34) often referred to in mathematical

statistics (59) where equality models must be utilized on the
basis of the inequality

(L .a, .x )2

"_J—LLJTf.EJ:ij: J=1l,...,J. (3.35)

2 5% 5
By using the upper bound of (3.35) for the approximate distri-

bution of Yi can be exprecsged as

- 2

L.a, .x -
(L1352 (¢ a ). (3.36)
L 48 5%y

Now we can redefine (3.36) in terms of the approximation of Y1

b, (T ,a, .x,)
prodb (XZ(ZJ;iJ) < —1——£:i1;1-) 2 a. (3.37)

Lo .
371373
The cumulative distribution of (3.37) is of a central chi-

square variate with degrees of freedom h = ijij

F(w) = (2220372 8271 | op (-t/2)ar,  (3.38)

»,L.a
we (L)), (3.39)

238 5%
By using the chi-square tables for various combinations of

and h, the valuec of w can be readily fownd, For example,
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if a, = .99 and h = 2,0, the chance-constraint equation

would be

prob (X2(2.0) < w) = .99, (3.40)
the value of w can be easily found to be 9,21. Thus, for any
combination of the tolerance measure oty and the degrees of
freedom h, the upper bound of the cumulative distribution
(3.40) can be found. Therefore, the chance-constraint equation

can be exprzssed in its deterministic equivalent
- - .2
- > . 3-
byZ ja, 4x, vy e Xy 2 0 (3.41)
Since the above is a concave function of the vector x for all

w > 0, the final deterministic model for the chance-constraint

programming can bz expressed as a convex programming problem

min w = -chjxj, (3.42)
subject to

bizjzijxj - wizj;ijxg 2 0, i=1,....1. (3.43)

xi’wi > 09 j o 190-.9\]0 (3.44)

Returning to the portfolio model, (3.17 through 3.23), we
can roarrange (3.22) and (3.23) to correspond to the form in

(3.37) by mult’plying through by -8,x,and -X,, respectively,

resulting in
prob {-a;x, < iy = x,) 2 n,. (3.45)
Follcwing the same procedure

prob (-a;x; < ax, - k) = X3) 2 nj. (3.46)
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Multiplying both equations by minus one, the portfolic model
(3.18 through 3.20) can be formulated as

max Z = E(alxz + asx, + a3x3), (3.47)
subject to
prob (a,x, > L)) 2 ay, (3.48)
prob (ayx, 2 Ly) 2 a,, (3.49)
prob (azxqy 2 L3) > a,, (3.50)
x, < k, (3.51)
prob (a]_x1 2 Xy = ky) 2 n,, (3.52)
prob (alx1 + 8%y 2 Xq - k3) 2 n,. (3.53)

To transform the portfolio ‘model. to the convex programming
form, we employ the chi-square approximation developed above.
First, find the value of W, for each probabilistic constraint
as illustrated in (3.40). For the first three constraints,

tile wom Of the mean n is .UD and tne
prob (xz(.OS) < wi) = .95, for Wys Wy, and wy. (3.54)

Using the tables for a control chi-square variate, we find
v = 0.192. The last two constraints can be handled in a

similar manner. Por (2.51) hs = ,05 and the tolerance measure

prob (x2(.05) < wg) = .999, (3.55)

find w; to ba 0.615, The finsl eonstralnt hac an he =

- .10

with o = .99, thus
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prob (x2(.10) < wg) = .99,

(3.56)

resulting in Vg = .663. The values of W; can now be employed

in the above chi-square constraint (3.43).

The portfolio model (3.47 through 3.53) can now be formu-

lated as a convex programming problem

min w = -.Ole - .OSx2 - .05x3,

subject to
~1300(.05)x, + .192(.05)x} > 0,
-1000(.05)x, + .192(.05)x5 > 0,
-1000(.05)x, + .192(.05)x3 2 O,
7000 - x, > 0,
(x, = 5000)(.05)x, - .605(.05)x2 > O,

(xy - 9000)(.uSx; + .05x,) - .663(.05x% + .05x3)

2 0,
Xy > 0.
Clearing terms in the model, we have

min v = -.Ole - .Osz - .05x3,

sub jact to

2

-65x1 + .le1

> 0,

-50x, + .01x3 2 0,

2

7000 - x, > O,

1

(3.57)

(3.58)
(3.59)
(3.60)
(3.61)

(3.62)

(3.64)

(3.65)

(3.66)
(3.67)
(3.68)

(3.69)
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250x, - .05%,%, - .03x: > 0, (3.70)

2
450x1 + 450x2 - .05x1x3 - .05x2x3 - .033xl

- .033x > 0, (3.71)
x, > 0. (3.72)

In the first three constraints, 1if we rearrange the terms by

adding the left-hand term to both sides then dividing through

by the same term, we have

x, 2 6500, (2.73)
x, 2 5000, (3.74)
x5 > 5000, (3.75)

The only deterministic constraint can be expressed in its

original form
Xy < 7000, (3.76)

The last two constraints cean be zimplificd in a3 similar manner

Yk, 4 Olix, + 011x- Y% x, + .00007x
1% % 3t 1 X¥o%3 * - 1

+ .00007x}1x5 > 1. (3.78)

The portfolio model is now in the convex programming form,
Nonlinearity is introduced in the last constraint eauation,
The problem can now be solved by geometric programming, or
more specifically, generalized polynomial programming (54).

The procedurs for the transformaiion of he medai into a form
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compatible with the geometric programming algorithm will be
summarized at each step.

The model will be converted back to a maximization problem
80 that the dual will be a minimization problem consistent with
the discussion earlier. Likewise, the constraints will be
transformed so they will be less than or equal to unity. The
first four constraints are all monomials which can be converted
in a like manner. For example

x, > 6500, (3.79)

can be divided by the right-hand side to give

Xy
€500 > 1, (3.80)
which is the same as
X
1 < &500° (3.81)
therefore, dividing through by the right-hand side again
6500x;* < 1. (3.82)

The last two constraints can be transformed by dividing through
by minus one. The problem can again be presented as

max Z = .05x1 + .05x2 + .05x3, (3.83)
sub ject to
6500x7" < 1, (3.864)

5000x;" <

A
([ d
L

(3.85)

5000x3* < 1, (3.86)
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.007x, < 1, (3.87)
-1 -1
X%y = .011x3 - .011x1 XyXg = .00007x1

- .00007x11x% < 1. (3.89)

The fifst step in the formulation process is to express
the coefficients in terms of a new variable, say Xg- The
value of the variable is chosen such that its exponent is
equal to the ratio of the logarithm of the coefficient to the
logarithm of some normalizing constant. Computational results
have indicated that the use of 1000 as the normalizing constant
tends to reduce the number of iterations. For example, the
variable to replace the coefficient in the first constraint
could be found by

leﬁ 6500/1n 1000). (3.90)

In a similar manner. the coafficienie in ameh of rha aanatrinne

can be expressed in terms of Xgo The constraints can now be

expreaessed as

x1'271x11 <1, (3.91)
x2'233x£1 <1, 3.52)
x Pt <1, (3.93)
x0 1% < 1, (3.94)
x;0°647xl ~ x;0°750x2 < i, (32.,95)
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~1 -1.469 -1.469 -0.620
xl x2 - XQ X3 - xa xe3 - xa xl
-0,620_~1_2
- X, Xy %5 < 1. (3.96)

This completes the normalization of the coefficients.

The next step is to convert the objective function into a
constraint, Thig is done to facilitate parametric changes of
its corresponding dual variable as indicated earlier. Again,

introduce a new variable Xg such that the new objective func-

tion is
1
min w = ==, (3.97)
X5
sub ject to
Xs < x20.569xl + xZ0.569xz + x;0.569x3’ (3.98)
dividing both sides by X XpXg gives
x x-0.569 x-0.569 x-0.569
5 4 4 4
X X,X < XX + X, X + X,X ’ (3.99)
1%2%3 2%3 1%3 1*%2
select another variable Xg gsuch that
X6 xz0.569 xz0.569 x20.569
T S k= 4 % * <% < %g. (3.100)
1%2%3 2%3 *1%3 1%2

The above inequality is used to form

-0.569 -0.569 -0.569

—2— < 1 and + ;
X1X9pX3%g X9X3Xg X1X3Xg X1X2%g

< 1, (3.101)

By introducing yet another variable Xq that will satisfy

«0,569 -0.565 -0.5069
x,0+3%9 xau o x;,

@ 'R7 5_ 19 (3.102)
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we can now convert the two left terms to monomials by intro-

ducing the weighing variable e

-0.569 -0.569
%4 1 and b <1 (3.103)
e1xgRaxg = A1 T = e )myxgmg = 0 -

where 0 < e, < 1. We can also express the terms on the right

of (3.102) as

-0.569
%7 ¢ | and ——xt <1 (3.104)
e) = (1 - eplxyxyxg = = '

where 0 < e, < 1. The first expression in (3.101) is amended
by the weighing variable eq

X
—_—
e3X ) X%3%g = (3.105)

where 0 < eg < 1. The tightness constraint is added for the

variable Xg

» (3.106)

where 0 < e, < 1. This completes the conversion of the objec-
tive function.

The third step is to convert the constraint equations
into monomials that can later be transformed into a log-linear
program. The writer is grateful that the first four equations

are already menomials requiring only the addition of the weigh-

ing variables

-1.1,271_-1
eg X, x,” < 1. (3,107)
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33
gl Pt <1, (3.108)
-1.1.233
e7 X, 31 <1, (3.109)
-1 .0.78
egtx; 0 %% < 1. (3.110)
The fifth equation can be treated as before
ZO 697 x) - -O 750x2 < xg» (3.111)
such that
-0 697 -O 750x2
i S |
o3%s <1 and zi—:—sgj;g (3.112)

The last constraint can be converted to a set of monomial
equations by the addition of new variables, one for every
pairwvise decomposition. Start by adding the last two terms
to both sides of constraint (3.96) and introduce x,

-1 -1.469 -1.469 -0.620 -1
X} % = X X3 = X, XoX3 S X4 Xy

-0 _A20 ~1 2 o

dividing through by Xq gives

xilxz xz1.469x3 Zl 469x2x3
E7 e % <1, (3.114)
and
-0 620 -1 -0 620_-1_2
S W S W PR {(3.115)

X9 X9
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converting the latter, we have

-0.620_-1 o 620 1 2
X4 X)
4"l <) and T"""’T"‘ (3.116)
10%9 1 - e)9)%g

Again adding the last term in (3.114) to both sides and adding

the new variable x10

x-l x-l 469 x-1.469 x
1% X 3 23 < (3.117)
Xg Xq - Xq 10 = ™ .

the two sets of terms can be converted to monomials as before

-1 -1.469
o S APPSR (t“_ - ?i <1, (3.118)
€11%9 11’%9
1 469
X
-l- <1 and (1 x% 3¢ (3.119)
€12 = ©12/% T
adding the tightness constraint for Xg
X9
e <1, (3.120)
13
where
0 < eg < 1 and 0 < eg < m, (3.121)
0 <eg<1land 0<e;c<e, (3.122)
0<e;<1land0c< e;q < =, (3.123)
0< eg < 1 and 0 < 819 < o, (3.124)
0 < @3 < 1. (3.125)

The resulting geometric programming problem in monomial
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min w = g;, (3.126)

sub ject to
(normalizing constraint)
.001x, < 1, (3.127)
(objective function)

o lyml -1 -1,-0.569 _

xz X3 x6 na < 1, (3.128)
(1 - el) 1x21x31x61x40 +365 <1, (3.129)
-1
92 x7 5 1, (3.130)
(1 - o) hxyliglxz ;0989 < 4, (3.131)
1 -1
e3 1 x2 x5x6 <1, (3.132)
-1
e, % < 1, (3.133)
(loss constraints)
el ll 27 ¢, (3.134)
eglle w23 <, (3.135)
(capital constraints)
e91x1x8 xzo 697 <1, (3.138)
(1~ 0g) haymgtiz0: 790 < o, (3.139)
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o~ Lyl -1, -0.620 _

e10%1 X9 Xy < 1, (3.1490)
(1 - elO) lxllx%xglxao 620 _ <1, (3.141)
li llxzxgl <1, (3.142)
(L - ey tagxglaz 1469 < 1, (3.143)
-1
o730 < L, (3.144)
(1 - ep)" x2x3x9x41 -469 <1, (3.145)
e3%g < 1, (3.146)

(geometric programming weighing constraints)

0 <e <, (3.147)
0<ey<1, (3.148)
0<e, <1, 0 <ey <, (3.149)
0<eg <l 0 <eq<a, (3.150)
O<eg<l, 0<eq<a, (3,151)
0<e;<1, 0 < 811 < (3.152)
0<eg<1l, (3.153)
0 < e13 < I, 0 < @9 < . (3.154)

The computational dual of the above problem can be

expressed as A& log-linear program
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max Z = ln .001y1 4+ 1ln eilyz 4+ In (1 - el)-1y3
+ nely, + 1n (1 - ;) tyc 4 In et
2 Y4 2/ Vs 3 Ve
- -1 - -
+ In ealy7 4+ 1n e; yg + 1n e61y9 4+ ln e71y10

-1 -1 -1

1 -1 -1
+ 1n eyqy), + 1In (L - e;5) "yy5 + 1n e}y,

-1 -1
+1n (1 - e))) 7yy7+ Inepyg

-1 -1
+# In (1 - °12) Y19 ¢ 1n e13y50, (3.155)
sub ject to the log-linear constraints

Yo = 1, (3.156)
V5= Y6 =Yg * Y11t Y12 - Y14 " V15 " V16 = O (3.157)
Y2 < Y3~ Y5 Y6~ Vgt Y13+ Y15+ W

* ¥ay = 0, (3.158)
Y2 - V3T Y0t V7t Vi = 0s (3.159)
6.907y1 - 0.569y2 - 0.569y4 - 0.569y5 + 1.271y8
+ 1.233y + 1.233y,( - 0.786y,, - 0.67y,, = 0.750y,,
- 0.620y,, - 0.620y;¢ - 1.469y,; = 1.469y,9 = 0, (3.160)
Y2 = ¥3 = V¥5 =Yg+ ¥7 =0, (3.161)
Y12 = Y13 * Y20 = 0 (3.162)

Y T Y15 = Y16~ V17t Vg = Os (3.163)
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€15 €9y €10 €17y €19 = .5, (3.164)
€3, @,, €5, €g, €, €g, €3 = 1, (3.165)

The solution of the portfolio model is given below along
with the solution of Portillo-Campbell (58), who used the
normality assumption of chance-constraint programming and
solved the problem by SUMT. Also, the original (decision
rule) solution of Naslund (51), who only solved the linear
portion of the model, is given in Table 2,

The nonlinear solutions for the chi-gsquare case is con-
sistent with that of the nonlinear normal, in respect to 3
and Xq. The value of Xy 18 in line with that of the linear
case. The difference between the values of Xy for the two
nonlinear cases is not apparent. In general, the solutions

for the chi-square and the normal cases were expected to be

quite close since a chi-square can approximate a normal dis-
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was close to zero.

It should be noted that the procedure provides only an
approximate solution, The geometric programming algorithm
employed does not iusure a global soluftion; thus, a stopping
rule is used to determine the point of termination., The

stopping rule used for this problem was set at sum of squares

ZJ - CJ less than 0,001,
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Table 2. Solutions to portfolio model

Decision rule Direct solution Direct solution
linear case nonlinear (SUMT) nonlinear (G.P.)
(norm, ass.) (norm. ass.) (chi-square ass.)
x, = 5900 Xy = 6581 X, = 6597
Xy = 5500 Xy = 3528 X, = 5588
Xy = 5000 Xq = 5024 Xy = 5028
z* = 820 z¥ = 756 2* = 861
Table 3. Convergence of geometric program solution
Iteration Computed Sum S
number Z max z, -cd
J 3
0 2.1813 4,6651
1 0.4733 3.4092
2 -1.4393 2.2435
3 -4,5842 1.2173
4 -6.6662 0.6022
5 -6.6921 0.0459
6 -6.7431 0.001r7
7 -6.7581 0.1183 x 10~3
8 -6.7581 0.5101 x 10°°
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Table 4. Values at the end of the eight iterations

Basic variables Non-basic variabies Log value at ey
y, =0 y; = 3.238 x 10710 e, = -2.00248
y, =0 ys = 6.730 x 107 ey = 0,744kt
y, =0 yg = 2.615 x 1077 ey = -0.45413
yg =0 y; = 5.002 x 10711 e, = -0.47804
y; =0 yy3 = =6.357 x 107° e = 0.08616
yg =0 yy5 = .01l x 10712 e; = 0.03922
¥y = O yyg = 3.926 x 107° eg = -0.83326
yyg = 0 yyg = 5.560 x 10710 ey = -0.15900
Y4 = O ejp = 0.76572
yy7 = 0 e, = -0.95129
yig = 0 ey = =0.20702

0

Y0 = e 3 = 0.24686
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In the next section, the chi-square assumption will be
used in the formulation of a capital investment planning
model, in which the timing of investments is dependent some-

what on the cash flows,.

Capital Budgeting Model

In this section, we will formulate a capital budgeting
model to allocate capital investments over a finite planning
horizon., The concept of risk will be divided into two classes,
The risk associated with "opportunity loss" will be structured
as a payback constraint in which trhe investor wants to recover
his initial invested capital within a specifiad period in
order to take advantage of new investment opportunities., The
concept of payback as a constraint is discussed in (7 and 71).
To protect against "actual losses' or cash flow shortages, a
liquidity constraint is introduced that permits borrowing to
meet the liauidity condition. To guard against misuse of
borrowed funds, a penalty cost is added to the objective func-
tion. The liquidity constraint is developed along the lines
of linear programming under uncertainty. The model is formu-
lated in the framework of a chance-constrained program
utilizing the zero order rule. The random variable will be
agsuned to be distributed as an independent chi-square. The
two-stage decision rule of LPUU is incorporated within the
structure of the model. Each capital investment will consist

of a pointe-input and atrream-output to genarate the two cash
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flows, The investment cost cij for each project i at each
point j is known or estimated. The flow of funds both into
and out of the firm is controlled by the decision parameter x.
In general, we can think of the variable xij as the proportion
of the total capital expenditure to be committed to the ith
group at time j. Therefore, the value of xij for each project
will be one if accepted or zero if not accepted at time j.
Correspondingly, the decision governing the inflows X3 can be
thought of in a similar manner. The returns from an invest-
ment xij can be denoted as rij when observed at the jth point
in time or Tk when the return is measured k periods after the
start of the project. This case would correspond to the kCh
payback period or the discounting interval in traditional cash
flow analysis. The symmetry of the cash flows can be seen in
Figure 1,

First, we can structure the payback constraint that will
allow for additional profit opportunities by increasing the
available funds for reinvestment. In general, this is accom-
plished by minimizing the payback period thereby increasing
the velocity of capital funds. To provide additional freedom
of selection, we will assume that any project may be slid borh
forward or backward to take advantage of available capital,
This assumption may raise some question but for simplicity we
will assume that all projects can be moved withcut penalty.

Now the payback constraint can be expressed as
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prob (Zi(}:krik)x11 + (Zk,rik,)xiz ool 4T X)

> ZiEJciij) >a, (3.166)
Whefe k = 1,..-’K’ k' = l’oo"K-l’ k = ki’ 1 = 1,.-.,1’ and
J=1,...yJ. For simplicity, we can denote the above as

prob (R, > Cj) > a, (3.167)

This will set the upper bound on the investments undertaken at
each period. The payback constraint serves the same purpose
as the capital constraint in the portfolio model. Byrne
et al, (8) has noted that the flow of returns is from aggre-
gated sources that may or may not be interrelated but may be
approximated as a series of independent random variables
(normal or, in our case, chi-square).

Next we will formulate the liquidity constraint and its
two-gtege decision rule, The liquidity condition can be

structured from a set of "balance sheet" variables. First, we
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each period. This is equal to the starting balance of the

next period. Let MO be the initial capital avallable at the
start of the planning period. The amount of cash on hand (or
equivalent) tc retain liquidity can be denoted as Lj' This 1is
analogous to the loss constraint in the portfolio model, Since
we can borrow funds to meet our liquidity level, we can denote
wj ag the amount borrowed at the end of the period. We will

assume excess funds will be used to pay back loans incurred at

earlior periecds. The cash flow of ilnvastment coskt ean be
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denoted as Cj as seen in the payback constraint. We can first
define cash flow of returns as the amount received at j from

all on-going projects 1
Rj = Zirijxij. (3.168)

We can now examine the workings of the liquidity constraint by

letting

J= 1: MO-EicilzﬂlifM1<Ll

then Wl = Ll - Ml’ (3.169)
(Wz found as above)
j= 3: M, - Ei(ri_zx11 + rilxiZ) = Licy3%;53 = Mg, (3.171)
Since Mj-l is composed of MO + R:j - C1 then we can rewrite the
cash flow of returns as

RJ = Ej(rijx11 *rygXy t et rilxij)’ (3.172)
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KJ = LJ = MO, (3.173)

since both MO and all levels of LJ are known. We can now
express the liquidity constraint

R, - C

s - Ko+ W, >0, (3.174)
3 5 3 J

where RJ . Cj indicates the balance of the two cash flows or
the remaining funds (+) after committing investments at j. KJ
sets the lower bound of the treasury. I1f the difference

between Rj - Cj is less than Kj’ then the firm must borrow

funds to cover the difference. Since the use of borrowed
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capital is not free, we will add a penalty cost to the objec-
tive function to discourage over borrowing. Thus, the
objective function can be written as

max Z = E(R, = Cp - I p,W,), (3.175)

where pJ is the penalty cost for borrowing funds. The terminal
cash flow is denoted as Dt - Ct' The liquidity constraint is
structured as a two-stage linear programming under uncertainty
model. The constraint, while probabilistic, operates dif-
ferently than the other chance-constralned equations.

To examine the mechanics of the medel, first let us

express the model in the CCP form

max 2 = E(R, = Cp - £,p4H;), (3.176)
sub ject to

prob (Rk > Cj) > o, (payback constraint) (3.177)

prob (RJ - Cj - Kj * wj > 0) > 8. (3.178)

(liquidity constraint)
Notice that Cj is the some in both constraints and that Rk and
ﬁg are random variables composed of a series of independent
chi-square variates. Next, we can describe the process of the
combined model. The first step is to find an estimate of Cj
by letting

prob (XZ(Rk) < Ej) =2 1-a, (3.179)

thus, Ej i3 the maximum allocation of investment funds at

period j that satisfies the payback constraint. Next, we can
find
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prob (XZ(Rj) < Sg.) = 1-8, (3.180)
where

sckw-.-.cj -Kj+wj. (3.181)

Since CJ is estimated at Ej and Kj is known, then WJ can be
found., The only remaining step is to determine the penalty
cost for borrowing that will constitute the second-stage
decision rule for the liquidity condition.

A sample problem was structured that consisted of three
projects and three time periods. The resulting deterministic
equivalent and its geometric program follows the procedure
discussed earlier and will not be stated.

A sample problem was developed using arbitrary data to
illustrate the procedure. The results indicated that all but
one project was selected in the first period and the remaining

project in the second. Borrowed funds were needed to meet the

€Rennte ommend Al VA aal AL beem a~ ™~
e Pl @ kA b ) \..vuu\.:..aa.ul- vut. none \.utzx.ucu.\.c.s.. ire

results, in general, are consistent with Byrne's mocdel (7 and
13) where normally distributed random variables were used.

However, the estimation and computation procedures were much

simpler.
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SUMMARY AND CONCLUSIONS

The decision maker concerned with the planning of capital
expenditures must consider both the timing of capital invest-
ments and the risk associated with committing funds. This
investigation has put forth the idea that the analysis of risk
of an interrelated investment plan can be accomplished by
chance-constrained programming (CCP) using the computational
procedures of geometric programming. The basic assumption for
the analysis has been made that the chi-square distribution
approximates the occurrence of the chance variable. The pro-
cedure was illugtrated in a portfolio expansion model and the
results compared to previous solutions under different assump-
tions and procedures. Also, e capital budgeting model was
developed which incorporated the two-stage decision rule of
linear programming under uncertainty. The model employed a
payback conastraint to handlc "opportunitv loss! tvpa of riai,
while a liquidity constraint is included to handle the more
traditional accounting leosses.

In light of the investigation just completed, the fo!low-
ing conclusions may be stated:

i. Wnen the chance variable is nonnegative with a

positive finite mean, the procedure developed herein
will yield a more precise solution than from those

methods previously avallabie.
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The computational problems associated with apprexi-
mating a nonnegative parameter with a standard normal
distribution are relieved by the use of the chi-

square distribution.

Geometric programming procedures reduce the computa-
tional difficulties normally associated with chance-

constrained programming,

Some suggestions for future research are:

1.

2.

The procedure could be expanded to include the
solution of the tolerance or confidence limit
directly as a function of the sample size and its
related cost,

Application of safety-first programming as an adjunct
to the procedure developed herein would be useful in
capital investment planning.

The phasing of capital expenditures demonstrated by
this procedure could be employed in a model for

capacity expansion and growth of an organization.

In conclusion, the procedure and the models have illus-

trated the potential application of stochastic nonlinear

R vn o~ ~ — —_ -
programming ac a2 methed ¢f analyzing scme of th ng that

confront the capital investment planner.
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100

11

21

20

70

INPUT = 5
OUTPUT = 6

GEOMETRIC PROGRAMY

SOLVED EY USING LINEAR PROGRAMS

IMPUT DATA MUST BE A CONSISTENT LINEAR PROGRAM FORMED
BY CONVERTING A TIGHT MONOMYAL CONSTRAINED SEOMETRIC

PROGRAM.
INPUT DATA REQUIRED
FIRST CARD NUKBFR OF L.P.CONSTRAINTS
SECOND CARD NUMBER OF L.P. COLUMNS
AN ARKAY OF SUBSCRIPTS OF EPSTLONS ASSOCIATED WITH FACH ZOLUMN
AN ARRAY OF POINTERS TO PATRED EPSILONS
SUBROUTINE INTIAL READS IN THE LINEAR PROGRAM AND SOLVES FOR
A BASIC PEASIBRLE SOLUTION AND THEN SAVES THIS FEASIBLF
SOLUTICN FOR USE WITH LINEAR PROGRAM B

CALL INTIAL

FORMAT (' ',5D19.7)
COMPUTE SUM OF SQUARES OJF 2J -CJ

CALL 2JCJ (XX)

JJ = 0

Z = EX (M1T,1)

IF ( XX .LT. 0.1D-10) XX = 0.1D-1)

YY = XX

TPHASE = 1

WRITE ( OUTPUT,21) JJ

FORMAT ( *'1?, ' TITERATION NUMBER ', I3)

JJ = JJ + 1

WRITE ( OUTPOT,20) F®X(M1T,1)

FORMAT ('0','COMPUTED VALUE OF THZ OBJECTIVE FUNCTTON = ',D13.7)

J3J = 1

CONTINUE

DO 22 I = 1,NT

IF ( IBS (I) .NE. JJJ) GJ TO 22

98



TF ( IT(Y) .LE. 0) GO TC 23
IF ( IT(I) .LT. I) GO TC 22

23 WRITE (OUTPUT, 101)JJJ, E(I),JdJJ,DZ(I)
JJJ = JIJ + 1

22 CONTINUE
IF { JJJ .LE. XKK) GO TC 70

101 FORMAT (" ','E(',I3,') =',D19.7,13X,'DELTA F(',IL4,*) =',D19.7)
pO16 I = 1,NT
X=DEXP (EX (M1T, I))

16 WRITE (OUTPUT, 105)7T,I,E¥ (M1T,I , X
DO 200 I = 1, MT
K = IIB (I)
DE ( I) = 0.0D0

200 CONTINUE
DO 201 I = 1, MT

= NT + I

= 0.0D0

0 202 J = 1, MT

P + EX (J,K) *DF(J)

= DEXP (P)
WRITE ( OUTPOT, 203) I,F

203 FORMAT (° ', ' X (',IS5,' ) = ',D13.5)

201 CONTINUE

105 FORMAT (° *','2(',I3,') -C(',I3,')',D19.7,'FXP',D19.7)

PORM LTINEAR PROGRAM B USING BASIZ FEASIBLE SOLUTION OF 1A

202

o rgQg XN

t

CALL FORH

COMPUTE 2J -CJ FO® LINEAR PPOGRAM B
CALL 2J

SOLVE LINEAR PROGRAM B
CALL LPP

CHECK IF LINEAR PROGRAM B IS UNBOUNDED,I¥ SO CALL BOUND

IF ( ICHECK (1) .NF. 1) GO TO 2
COMPUTE FEASTBLE DIRECTTON FOR CIAN3T OF EDOSILONS

L8



2 CALL DELTA
6 CONTINUE
COMPUTE THE SUM DF SQULRES OF 2J -2J
CALL ZJCJ (XX)
IF THE NEW SUM OF SQUAPES IS NOT LOWER THAN DREVTIOUS
DIVIDE THE CHANGE IN EPSILON BY TWO
IF ( XX.LT. YY) GO TO &
IF ( IPHASE .¥E. 2) GO 10 10
DO 40 I = 1,N
40 E (I) = Z(I) + DE(I)
CALL ZJCJ (XX)
GO TO 44
THRU ... 3 DIVIDES DELTA E BY TWO
10 CONTINUE
DO 3 T = 1,N
DE (I) = DE(I) / 2.0DO
3 E(I) = E(I) - DE(I)
GO TO 6
CHECK FOR TERMINAL CONDITTONW
4 IPHASE = 2
YY = XX
G0 TO 10
44 IF ( XX .3T. 0.1D-10) GO TO 1
IF ( Z .LT. EX(41T,1)) GO TO 11
IF ( 2 .G™. EX(M1™,1)) GJ TO 10
1000 STOP
END
SUBROUTINE LPP |
IMPLICIT REAL*8 (A-H,0-7)
DIMENSION A(20,40) ,IB(4C),IRT (40) .
DIMENSION E(40),DE (40),1BS (40),IT(40)’
DIMENSION ICHECK (40)
DIMENSION C(40),CB (40)
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C
C

SUBROUTINE LP IS A STANDAR) SIMPLEX METHOF OF SOLVINSG

DIMENSIGN UPPER ( 40),I1ARK (40)
INTEGER DJUTPUT
INPUT, QUTPU"
A, TIBT, IB
E,DE,IBS,IT
Cc,CB,XXXX,IOL
ICHECK
N,M,”1,MN,K<K
NT ,MT, M1T, MJT

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

THRU cee

300

201
202
204
200

60

70

/Al
/A2/
/A4y
/AS5/
/A6/
/A7/
/A8/

60 INITIALIZES !JNBOUNDED

DO 300 I = 1,N
UPPER (I) = 0.0D
IMARK (I) = O

DO 200 JJJ = 1,K
DO 200 I = 1,NT

I? { IBS (I) .NE
IF ( IT(I) .EQ.

IF ( IT(I) .LT.

IF ( IT (I) .LT.

UPPER (JJJ+1)=(1.0D0

0

KK

. JJJ) 30 TO 200

0)
0)
I)

G2 TO 201

GO TO 202

GO 70 200

- E(I))*.95D0

CHECK

UPPER (JJJ + KKK + 1 ) = ,95D0* E(I)

GO0 TO

200

UPPER { JJJ + 1)

GO TO 2

04

UPPER (JJJ + 1)

UPPER (
CONTINU
DO 60 I
ICHECK

E
=1
(1)

o N
=0

1.0D0
JJJ + KKK + 1)

10000.D0

E(I)

SELECTS COLUMN TO ENTER BASIS

IJ= 0
X ==0.1

D-10

.95D0* = (I)

L.DP.'S
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THRU ... 51 FPINDS MOST NEGATIVE A(J) -

51

DO 51 I= 2,N
Z = A (M1,I)

IF ( IMARK (I) .NE. 0) % = - Z
IP ( 2 .GE. X) €2 TO 51
IF ( ICHECK (I).EQ.1 ) GO TO 51
L=T-KKK

IF (L .L7. 2) L=I+KKK

IF (IMARK (L) .NF.0) GO TD 51
I5 = I

X=2

CONTIKUE

IF (IJ .E2. 0) GO TO 100

JJ = 1J

X = 0

ITHETA = 3

X = UPPER (IJ)

Y = X

D0 501 I = 1,H

IF ( A{I,IJ) .LT. 0.1D-°0) SO0 TO 501
Y = A(I,1) /A(I,IJ)

IF { X.LE. Y) GO TO 501

ITHETA = 1

X =Y
K = I
CONTINUE

D0 502 I = 1,H
IP ( A{(I.IJ) .GT.-0.1D-710) GO TO 502
IF ( I3 (I) .GT. N} 50 10 502

Y =- (UPPER(IB(I))-A(I, 1)) /2 (I,TJ)

IF { X.LE. Y) GO TO 502

ITHETA = 2

X = ¥

< (J)

06



naoaoNonNnnnNn0 0

100

12
101

102

13
103

FORMAT (' ','THE SUBSCRIPTS OF EPSILON FOR EACH COLUMN A®CY)

DO 12 I = 1,N

WRITE ( OUTPUT,101) I,IBS(I)

FORM2T (' *,*SUBSCRIPT '°,I4,') = ',I4)
WRITE (OJTEUT, 102)

FORMAT (' ','POINTERS FOR EPSILON')

DO 13 I = 1,N

WRITE (OUGTPUT,103) I,ITTI)

FORMAT (' !','POINTER (',I4,' ) = ',IU4)

SUBROUTINE LP? SOLVES THE LINEAR PROGRAM

CALL LP

THRU ... 11 SAVES THF BASIC FEASIRBLE SOLUTION FD LINEAR PRI3RAMV

10

"

IIBT (J) CONTAINS POINTER TO ROW IF BASIC
ZERO IF NON BASIT

IIB (I) CONTAINS POINTER TO BASIZ TOLUMN

THE REMAINDER SAVES PARAMETZRS FOR

INITIALIZES PARAMETER FOR LINEAR PPOGRAM

L.P. A L.P. B

N NT NUMBER OF COLUMNNS

! MT NUMBER OF VARIARLES

X1 M1T  INDEX OF 20W OF Z(J)

MN MNT  COLUMN SIZZ WITY ARTIFICAT
DO 10 5 = 1,M
IIB (J) = IB(J)
DO 10 I = 1, MN

EX (J,I) = A (J,T)
DO 11 I = 1,MN
IIBT (I) = IBT(I)

MT = M
NT = N
H1T = M1
MNT = MN

" =N-1T-HM

LINEAR PROGRAM A

5

VAIIALBLZES

16



nnOn

C

ICOL IS THE COLUMN OF NOPMAL T VALUE USED IN NORMALTZATION
IVAR IS VARIABLE USED TO NORMALTZE L.P.'S COSPFITIFITS TD JNE
READ ( INPUT,7) IVAR,ICOL
THRU ... B8 NORNMALIZE CONSTRAINT COSTS TO ONE
XXXX = DLOG ( A (IVAR,ICOL))
DO 8 I = 2,N
8 A ( IVAR,I) = DLOG { A(JVAR,I))/XXXX
KKK = 0 '
THRU ... 9 INTIALIZES ALL PAIRED EPSILON TO J.5
INTIALIZES ALL OTHERS TO ONE
KKK IS TOTAL MUMBER OF E®SILONS USED
DO 9 I = 1,N
K = IBS (I)
IF ( RKK .LT. K) KKK = K
IF ( K .EQ0. 0) GO TO 9
E (I) = 0.5D0
IF ( IT (I) .LE. 0) E (I} = 1.0D0
9 CONTINUE '
SJBROUTINE COST COMPUTES COST COEFFIZIENTS DEPENDINT ON

CALL COST
SUBROUTINE 2J CALCULATES 2 AND Z (J) -C(J) POR LINEAR PROGRAY 3}
CALL 2J
WRITE ( OUTPUT,104)
104 FORMAT (' °,*' NORMALIZED INPUT MATRIX')
DO 14 I = 1,M1
14 WRITE {(OUTPUT, 105) I, (A(I,J),Jd= 1,4N)
105 FORMAT (' *','POW NUMRBER OF LINEAR PROGRAM ',T10,20(/S5D19.7))
WRITE ( OUTPUT ,106) (IB(I),I =1,™
106 FORMAT(' ','BASTIC COLUXNS APE',1575)
DO 15 I = 1,N
15 WRITE (QUTPUT,107) I, C(I)
1)7 FORMAT (' ',°COST COEFFICIEHMT (',T4,') =',D19.7)
WRITE { OUTPUT ,100)

26



READ (INPUT,7) (IBS(I),I = 1,N)
ZERO IF EPSILON (I) IS RESTRIZTED TO .3
-1 IF EPSILON (I) IS RESTRICTZD T3 .LE

READ ( INPUT,7) (IT (I),I = 1,Y)

T. 9
. 1

B + N = SIZE OF LINEAR PROSRAY A WITH ARTZTFICAL VARIABLES ADDED

MN = M + N .
L =N+

1
THRD ... 2 INTIALIZES ARRAY TO ZERO

DO 1 I = L,HN
IBS (I) =0

IT (I) =0

M1 = M + 1

DO 2 I = 1,MN-
IBT (I) = O

E (I) = 0.0D0
DE (I) = 0.0DO

2 C (1) = 0.0DO
TERU ... 3 INTIALIZFS ARTIFIAL VARIA3LES AND THEIR COST FUNZTIDNS

DO 3 I = 1,41
IB (I) = L
IBT (L) = I
CB (I) = - 1000.0D0
C (L) = - 1000.0D0

DO 4 J = 1,MN

4 2 ( 1,3) = 0.0D0
A (I,L) = 1.0DO
3 L=1L+ 1
THRU ... S READ IN LINEAR PROGRAM A ARTAY

EACH COLUMN CCRPRESPONS T) A GEOMETRIC DPRC3RAM
MONOMIAL CONSTRAINT
EACH ROW CZORRESPOND3S TO A PRIXAL VATIAS3LE

DO 5 I = 1,4

5 READ ( INPUT,6) ( A(I,J),J = 1,N)

€6



C

DO S31 I = 1,M

531 A(I,1) = A(I,1) + A(I[,IJ)* UPPER (TJ)
GG TO 65

700 CONTINUE
L =8 + 1
DO 600 J = 1,V
IF ( IBT (J) .NE. 0) GO TO 600
IF ( IMARK (J) .EJ. 0) GO TO 600
A(L,1) = UPPER (J)
IBT (J) = L
L =1 + 1

600 CONTINUE
RETURN
END
SUBROUTINE INTTIAL
INPLICIT REAL*8 (A-H,0-2)
DIMENSION E(ULO),DE(40),IRS (40),IT (40)
DIMENSION EX(20,40),TIB(49),IIBT(49)
DIMENSION C(40),CB (40)
DIMENSION A (20,40),IB(u40),IRT (40)
INTEGER CUTPUT
COMHMON /A1/ INPUT,OUTPUT
COMMON sA2/ A, IRT,IB
COMMON /A3/ EX,IIBT,IIB
COMMON A4/ E,DE,IRS,IT
COMMON /AS5/ C,CB,¥XXXX,ICOL
COMMON A7/ N,M,M1,M¥,KKK
COMMON /AS/ NT ,MT,™M1T,MNT

N EQUALS NNYBER OF MONOMIAL ZONSTRATNTS
READ (INPUT,7) ™

M FEQUALS NUMBER OF CONVERTED PPIMAL CONSTRAINTS

READ ( INPUT,7) N
IBS (I CONTAINS SUBSCRIPT JOF EPSILON ASSOSIATED WITH MONOMIAL
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502

505

506

508

510

520

K =1

CONTINUE
IF ( IMAEK (IJ)
IF ( 1THETA
CALL BASIS ( IJ,K)
GO TO 65

IF ( ITHFTA
IJJ = IB (K)
CALL BASIS (IJ,K)
IJ = 1JJ

IMARK ( 1J)

.NE.

. NE.

1

. N®. 0) GO 70 510
1) GO T2 505

2) GO TC 506

po 507 I = 1,M

A (I,1) = A(I,1) - UZPER (IJ) * A(I,IJ)
GO TO 65

IMARK (IJ) = 1

PO 508 I = 1,M

A(I,1) = A(I,1) - UPPER(IJ) * A(I,IJ)
GO TO 65

IF ( ITHETA .NE. 1) GO TJ 520

CALL BASIS (IJ,K)

A(K,1) = A(K,?) + UPPER (IJ)

IMARK (IJ)

GO TO

65

IF ( ITHETA

L = IE

CALL BASTS

(K)

IMARK (IJ

IMARK
A (K, 1)
DO 521
A (I, 7V

(]
- }‘1(

i =

GO TO 55

IMARK

(13

K
1
a

- NE.

Q

2) GO TO 530

(IJ,X)

L4
2
I

0
1
1)
M
s

0

1)

+ UPPER

(IJ)

S6



CHECKS FOR PAIR CHANGE
IF ( IT (J) .GT. 0) DE (IT(J)) = - DE(J)
4 CONTINUE
THRU ... % CHECKS FOR VIOLATED CONSTRAINTS ON EPSILON
IT (I) POSITIVE IF PAIR MUST EQUAL JNE
ZFRO TF ONLY POSITIVE RESTRICTION
NPGATIVE IF O.LE. 1

)

AN

DO S T = 1,NT
IF ( E(I) .LT. 0.1D-6) GO TO 5
X = E(I) + DE (I)
IF ( ¥ .GT. 1.0D0) GO TO 6
IF { ¥ .GT. 0.0D0) GO TO 5
X = ~ E(I) * .95D0/DE(I)
GO TO 7
6 IF ( IT(¥) .EQ. 0V GO TO S
X = (1.0D0 - E(I)) * .95D0/ DE(I)
7 p08J = 2,N
8 DE(J) = DE(J) * X
S CONTINUE
C COMPUTE NEW SET OF EPSILONS
Do 9 I = 1,NT
9 E(I) = E(I) + DE(I)
RETURN
END

96



aaan

i

IF ( DARS (A(M1,I)) .LE. 1.0D-10 ) A(M1,I) =
505 CONTINUE :

A(ITI,JJ) = 1.0D0
100 RETORWM

END

SUSROUTINE DELTA

IMPLICIT REAL¥8 (A-H,0-2)

DIMENSIOX A (20,40) ,I3(40),IBT(40)

DIMENSIOKN E (40),DE (40),I8S (40),IT(40)

INTEGER CUTP2UT

COMMON ,/21/ INPUT,OUTPUT

COMMON ,22/ A, IBT,IB

COMEON /A4, E,DE,IBS,IT

COMMON sA8/ NT,MT,M1T,MNT

COMMON /A7, N,M,M1,MN,KEK

SU3BROUTINE CELTA EXTRACTS A FEASIBLE DIRECTION FOR CHANGE

2.0DJ

EPSILON
THRU ... 3 ZEROES CHANGE
DO 1 I = 1,NT
1 DE (I) = 0.0DO
THRU ... 4 SFARCHES FOR BASIC VARIA3LE OPF DELTA E
DO 4 L = 1,KKK
THRU ... 3 FINDS SUBSCRIPI GF DELTA EDSILCY
DO 3 I = 2,NT
IF ( IBS (I) .NE. L) GO T0 3
J=1
GO TO 2

3 CONTINUE
2 JJ = L +1
CHECKS OFR POSITIVE CHANGE
IFP ( IBT (JJ) «NE. 0) D3I(J) = A (IBT(JJ), 1
CHECKS FOR NEGATIVE

IF ( IBT (JJ + KKK) .NE. 0) DE (J) = =-A(IBRT (JJ+XKX),1)

2F
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DO 52 I = 1,M
{F (A (I,JJ) .LE. 0.1D-7) GO TO
IF (X .EQ.-1.0D0 ) X = n(I,1) /
IF (X .LT. {(A(I,1) ~/ A (,33)))
X = A (I.1) S A(I,JJ)
IT =1

52 CONTINUE

RETURN IF COLUMN JJ CANNOT BE ADDED
IF (II.EQ. O ) GO TO 100

53 CONTINUE .

CHANGE OF BASIS

MAEXS CHANGES IN POINTERS
I = IB (IX)

IBT(I) = 0
TBT (JJ ) = II
I2 (II) = JJ

CB (II) = C(JJ)

CALCULATE NEW TABLERAU

THRU ... 31 COMPUTES NEW RCUS EXCEPT DIVOT R2OW

DO 31 I= 1,M1
IF (I.EQ. II) GO m™0 31

X = A (I,33) /A (II,3d)
DO 32  J= 1,HMN
32 A(I,J) = E(I,Jd) - A(II,J) * ¥

31 CONTINUFE
X = A(II,CJ)
THRU ... 3% COMPUTES NEW PIVOT ROW

DO 35 J= 1,MN

35 A(IT,J) = A (IT,J) / X
DO 40 I = 1,M1

40 A(I,JJ) = 0.0DO

THRU ... 505 CLEAN -UP PROCEDURFE
DO 505 1T = 1 ,N

52
A (1,J7)
350 TO 52

TD> BASIS
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C
C

Cc

C

1707 FORMAT
RETURN
END

('

' 'COST COEFFICIENT (',I4,') =',D19.7)

SUBROUTINE 2J
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION C (40),CB (40)
DIMENSION A(20,40) ,IB(40) ,IBT(40)
INTEGER CUTPUT
COMMON /A1/ INPUT,OUTPUT
/R2/ A,IBT, TR
COMMON /AS/ C,CB,XXXX,ICOL
COMMON /A7/ N,M,H1,MN,KKX
SUBROUTINE ZJ COMPUTES 2z (J) - C(J)

COMMON

DO 55
a2(M1,d)
DO 55
55 A (M1,J)
RETURN
END

J

I

PROGRAM
1,N
- C(J)
1M

GIVEN COST COEFFICIENIS OF

A(M1,J) + CB(I)* A(I,J)

SUBROUTINE BASIS (JJ,TI)
IMPLICIT REAL*8 (A-H,0-Z,
A(20,40) ,IB (40 ,IBT(L4O)

DIMENSION

DIMENSICN C(40),CB (40)
INTEGER OUTPUT

COMMON /A1/ INPUT,OUTPUT
COMMON /A2/ A,IBT,IE
COMMON /AS5/ C,CB,XXXX,ICOL
COMMON /A7/ N, M, M1,MN, KK

SUBROUTINE BASIS IS

IF ( IT.NF. 0) GO TO S3
X =-1.0D0

THRU ...

52

PINDS PIVOT ROVY

STANDAR) SIMPLEX TARLEAJ CHANGE

LINEAR

66



K = 0
SUBROUTINE SASIS TRIES TO ADD JJ COLJYN TO BASIS
CALL BASIS ( JJ,K)
IF (K.NE. 0) GO TO 65
YES CONTINUE ON
NO MARK AS UNBOUNDED AN TR” OTHERS
ICHECK (JJ) = 1
ICHECK (1) = 1
GO TO 70
700 CONTINUE
DC 200 I=1,M
J=T
IF (IB(I).LE.NX) GO TO 200
DO 240 ITI=2,N
K=ITI
IF (IBT (III).NE.O0) GO TO 240
IFP (A(J,K) .LE. 0.1D-6) GO TO 240
X= A(J, 1) /A(J,X) - 0.1D-6
DO 25C TII=1,M
IF (A(II,K).LE%. 0.1D-6) G0 TO 259
IF (A(II,?)/A(II,X) .LT.X) GO TO 240
250 CONTINUE
CALL BESTS (<,J)
GO TO 100
2460 CONTINUE
200 CONTINUE
Do 14 I = 1,
14 WRITF (OUTPUT, 105) I, (h(I,J),Jd= 1,4N)
105 FORMAT (' ','®CW NUMBER OF LINSAR PROGRAY ',I10,2" (/5019.7))
WRITE ( OUTPUT ,106) (IB(I),I =1,M)
106 FORMAT (' ', *BASIC COLUMNS ARE',15I5)
DO 15 I = 1,N
15 WRITE (OUTPUT,107) I, C'I)

»

—h

ERE A
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KE = KK + 1
C (KK) = C(KK) =-EX(I,1)*DE(IIB(I))
C (KK + KKK) = =- C(KK)
10 CONTINUE
RETURN
EHRD
SUBROUTIME LP
IMPLICIT REAL®*8 (A-H,0-7)
DIMENSION A (20,40),IB(4C),TBT(L0)
DIMENSICH C(40),C3(40)
DIMENSION ICHECK (U40)
INTEGER OUTPUT
COMMON /A1/ INPOUT, OUTPU1?
COMMON /A2/ A,IBT, TS
COMMON /AS/ C,CB,XXXX,ICOL
COMMON /A6, ICHECK
COMMON /MA7/ N, M, M1,¥¥,XKK
SUBROUTINE LP IS A STANDARL SIMPLEX METYOF OF SOLVING
THRY ... 60 INITIALIZES CUNSBOUNDED ZHECK
65 DO 60 I = 1 ,N

60 ICHECK (1) = O
SELECTS COLUMN TO ENTER RASIS

70 1J= 0
¥ =-0.1D-1C
THRUO ... 5% FINDS MOST NECATIVE Z(J}y - C(J)

DO S1 I= 2,N
IF ( A (M1,I) .GE. X) GO TO S1
IF ( ICHECK (I).ED0.1 ) GO TO 51
I1J = I
X = A (M1,I)
51 CONTINUE
IF (IJ .EQ. 0) GO TO 100
JJ = 1J

L.p.?

-

>

101



K =K + 1

A (K,1) = -EX (mM1T,J)

KK = IBS (J)

IF ( KK.NE. 0 j A (K,XKK+ 1 ) = A(K,KK+ 1) - DE (J)

DO S5 I = 1,MT

KK = IBS (IIB({I))

IF ( RK.NE. 0) A(R,KK+1, = A(K,KK+#1) + EX(I,J) *DE(IIB(I})

> CONTINUE

4 CONTINUE
THRU ... 6 ADDS COLUMNS TO INSURE POSITIVEZE DELTA ECSTLINS

DO 6 I = 1,KK¥
KK = T + KKK + 1
DO 6 J = 1,M
5 A (J,KK) = - A(J,I + 1)
THRU ... 7 PORCE INTIAL 30LUTION T? BE BASI- FEASIBLE
DO 7 I = 1,M
IF ( A(I,1) .GT. 0.0D0) GO TO 7
DO 8 J = 1,N =
B A(I,Jd) = -RA(I,3) ]
7 CONTINUE

J = N
THRU ... 3 ADDS LARGE NZGATIVE COST COEFFICIENTS TO TINITIAL SDLUTT

DO 9 I = 1,4

J=J + 1
CB (I ) = - 1000C.CDO
C (J) = -10000.0D0

IRT (J) = I
9 IB (I) = J
THRU ... 10 USE L.P., AS OBJECTIVE FUNCTTON COST PARTTALS

FOR FORMING ORWJECTIVE FINCTION FOR L.P, ®
DO 10 T = 1,MT
KK = IBS(IIB(I))
IF (KK.EQ0. 0) GO TO 10



DIMENSION A (20,40),IB(40),IBT {40)
DIMENSION E(40),DE (40) ,(BS{40),IT(40)
DIMENSION EX(20,40),ITB(40),IIBT(49)
INTEGER OUTPUT
COMMON A1/ INPUT,OUTPU?T
coMxON /A2/ A,IBT,IB
COMMON /A3/ EX,IIBT,II®
COMMON /AUL/ E,DE,IBS,IT
COMMON /A5/ C,CB,XXXX,IZOL
COMMON /A7, N, M,HM1,HN,KKK
COMMON A8/ NT ,MT,M1T, MNT
SUBROUTINE FORM SETS UP LIJFAR PROGRAM TO SOMPUTE DELTA EPSILON
THRU s e e 2 INITIALTZES ARPRRAYS

DO 1 I = 1,4

c83 (I) = 0.0DO
1 IB (I) = 0

DO 2 J = 1,MN

IBT (J) = 0
C (J) = 2.0DO
ro2I = 1,41

2 A (1,J) = 0.0D0

THRU ...3 COMPUTE THE PARTIAL DE®IVATIVE OF Z(.J)
D0 3 I= 2,NT
KK = IBS (I)
IF ( RK.EQ. 0 ) GO TO 3

DE (I) = - 1.0DO/E (I)
IF ( IT (I) .LE. 0 ) GC TO 3
IF ( IT (I) .LT. I) DE (I) = - DE(I)
3 CONTINUE
K =0
THRU .. U SETS UP KKK COLUMNS OF L.P. R ONE FOR SACH EPSTLOY

DO 4 J = 2,NT
IF { IIBT (J) .NE. 0) GO TO 4
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C
C

DC 4 J

5 FORMAT
RETIJRN
END

= 2,NT
4 XX = XX + EX(M1T,J)*EX(M1T, J)

WRITF ( OUTPUT,S)
(* *,*THE SYM O7? SHOUARES OFP 23 -J =',D19.9)

SUBROUTINE COST
SUBRUUTINE COST USED THE Z=SPSILONS

EPSILON AND

INPLICIT REAL*R
DIMETNSION A (20,40),IB (40),IBT(40)
DIMNTNSION E(40),DE(40) ,IBS(40),IT(40)
DINENSTION C(40),CB (40)
INTESGER OUTPUT
TNPUT,CUOTPUT
A, Ia%, 18

CCMYON
CCNMON
COMEON
COY4ON
COMMON
CC*MON
Do 1 I
C (I) =
IF ( IE
c (DY =
1 CONTINU
DO 2 I
2 CBR (I)

C (ICom

RETURN
END
SUBROUT

/AN1/
/A2/
/d4/
/AS/
/AT/
/A8 /

= 1,N

B, I
S, 8
oM
NT,

~

4

0.0D)

S {1
-DLOG

INE

o o

FORM

INPLICIT REALx*S8

DIXENSTCE

XX

(A-H,0--Z)

’

Y
REY

15,1
SvYY, 0L
v, KK

, N

fy o o T

(= (1))

1.4
= C( IE (I))
= - XXXX

(2-H,0--2)

Ci{#01.,C3 (40)

TO

CALCULATE COST

COEFFICZ®NTS

INTIALIZES THE BASIC COST VECTOR
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SUBROUTINE 2ZJCJ (XX)

-b

1 =8 + 1

N = RRK* 2 + 1
NN = N

RETURN

END
SUBRROUTINE ZJCJ ({XX)

ON EPSILON

USES THE COST COEFFICIENTS TO COMPOTE Z (J)
COMPUTES THE STIM OF SQUARES OF Z{J)

IMPLICIT REAL*S (A-H,0-17)
DIMENSION C(40),CB (40)

DIMENSTON E(40),DE{4C) ,IBS(40),IT(40)
INTEGER OUTPUT

DIMENSION EY(20,40),IT3(40),ITBRT(49)
COMMON ,A1/ INPUT,OUTPIT

COMMON ,A3/ FX,IIBT,1I3

COMMON A4/ %,DPE,IBS,IT

couMoN ,as/ C,CB,XXXX, [COL

CCMMON /A8, NT,MT,M1T, INT

DO 1 I = 1,87

C (I) = 0.0DO

IF ( IBS (I) .EQ. O) G> TO 1

C(I} = - DLOG (E(I))
CONTINUE

C (ICOL) = =-XXXX

DO 2 I = 1,MT

TB (I) = C (IIB(I))
po 3 J = 1,NT

EX (MI1T,3) = -C(J)

Do 3 I = 1,MT

EX (M1T,J) = ¥X (M1T,Jd + CB(I)=*EX(I,J)

XY = 0.93D0O

CALCIJLATES COST COEFFICIENTS DEPENDENT

-C(J)

SOt
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